Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости

и т. п. Искусственные космические объекты - космические аппараты, последние ступени ракет-носителей и их части.

Конвенция ООН «о международной ответственности за ущерб, причинённый космическими объектами» и «о регистрации объектов, запускаемых в космическое пространство» трактуют понятие космического объекта, как любого искусственного объекта (включая его составные части и средства доставки), запускаемого в космическое пространство. Таким образом, международное космическое право использует термин «космический объект» только по отношению к объектам искусственного происхождения. Для обозначения естественных космических объектов в международном космическом праве используется наименование - «небесные тела».

По аналогии с НЛО в практику вошло также использование выражения неопознанный космический объект .

Литература

  • Космический объект // Космонавтика : энциклопедия ; Главный редактор В. П. Глушко. - Москва: «Советская энциклопедия», 1985 - C. 189

Wikimedia Foundation . 2010 .

Смотреть что такое "Космический объект" в других словарях:

    космический объект - 3.2 космический объект; КО: Тело искусственного происхождения, находящееся в околоземном пространстве. Источник …

    каталогизированный космический объект - 3.3 каталогизированный космический объект: Космический объект размером более 10 30 см, включенный в каталоги сопровождаемых объектов систем контроля космического пространства или других служб и организаций. Источник … Словарь-справочник терминов нормативно-технической документации

    некаталогизированный космический объект - 3.4 некаталогизированный космический объект: Космический объект размером, как правило, менее 10 30 см, образовавшийся в процессе или после прекращения функционирования орбитальных средств в околоземном пространстве и не включенный в каталоги… … Словарь-справочник терминов нормативно-технической документации

    Космический полёт это путешествие или транспортировка в или через космос. Чёткая граница между Землёй и космосом отсутствует, и Международной авиационной федерацией была принята границей высота в 100 км от поверхности Земли. Чтобы на… … Википедия

    объект СС433 - Исследовавшийся в 1977 – 1978 г.г. странный космический объект, одновременно и удаляющийся, и приближающийся к Солнечной системе, и в то же время остающийся неподвижным относительно земного наблюдателя. E. Object CC433 D. Objekt CC433 … Толковый уфологический словарь с эквивалентами на английском и немецком языках

    В Викисловаре есть статья «объект» Объект (от лат. objectum предмет) то, на что направлена та или иная деятельность (или то, что создано этой деятельностью); в более широком значении любой предмет вообще. Объект нечто … Википедия

    - (от лат. objectum предмет): В Викисловаре есть статья «объект» … Википедия

    Вид «Хаббла» с борта космического корабля «Атлантис» STS 125 Организация: НАСА/ЕКА Волновой диапазон: видимый, ультрафиолетовый, инфракрасный NSSDC ID … Википедия

    Космический телескоп «Хаббл» Вид «Хаббла» с борта космического корабля «Атлантис» STS 125 Организация: НАСА/ЕКА Волновой диапазон: видимый, ультрафиолетовый, инфракрасный NSSDC ID … Википедия

Книги

  • Космический мониторинг объектов захоронения твердых бытовых отходов и промышленных отходов , Казарян Маретта Левоновна , Шахраманьян Михаил Андраникович , Рихтер Андрей Александрович Серия: Научная мысль Издатель: ИНФРА-М ,
  • Космический мониторинг объектов захоронения твердых бытовых отходов и промышленных отходов ТБО и ПО Теоретико-методические и социально-экономические аспекты Монография , Казарян М. , Рихтер А. , Шахраманьян М. , Недков Р. , Объектом исследования монографии являются объекты захоронения отходов (ОЗО), или, проще говоря, свалки мусора. Предмет изучения, которым исследуется данный объект,- методы космического…

Еще с древнейших времен человек интересовался небесными явления­ми: движением Солнца, Луны, планет и звезд, появлениями комет и метео­ров, солнечными и лунными затмениями. Строение и развитие различных космических тел, а также образуемые ими системы изучает астрономия. Ас­трофизика - раздел астрономии, изучающий физическую природу астроно­мических объектов, особенно звезд. Астрофизика возникла в XX веке и дополняет традиционные разделы астрономии, такие как астрометрия, небесная механика, звездная динамика и кинематика и т. п.

Результаты многовековых исследований небесных тел впечатляют. Звездный каталог-путеводитель, созданный для космического телескопа «Хаббл» (выведен на околоземную орбиту в апреле 1990 года) в качестве ба­зы данных содержит информацию о 18 819 291 космологическом объекте. Это самый большой из когда-либо составленных каталогов небесных объек­тов. Он включает 15 миллионов звезд и свыше трех миллионов галактик и по мере проведения научных исследований продолжает пополняться.

Самым распространенным космологическим объектом является звезда -самосветящийся газовый шар, в горячем ядре которого в ходе процессов ядерного синтеза генерируется энергия. Минимальная масса, которая требу­ется для образования звезды, составляет около одной двадцатой массы Солн­ца (1,989-10 кг). Ниже этого предела гравитационная энергия, высвобож­дающаяся при уплотнении массы, недостаточна, чтобы поднять температуру до уровня, при котором может начаться реакция превращения водорода в ге­лий. Масса наиболее массивных из известных звезд составляет около 100 солнечных масс. Именно масса представляет собой тот основной фактор, ко­торый определяет температуру и светимость звезды в течение всего периода ее существования как звезды главной последовательности (когда ядерным топливом в ее ядре является водород). В химическом составе звезд преобла­дает водород, а другим основным компонентом является гелий.

Звезды образуются в газопылевых облаках межзвездной среды скопле­ний. Вещество протозвезды уплотняется и коллапсирует, т. е. резко и быстро сжимается, в результате чего высвобождается гравитационная энергия и ядро нагревается до тех пор, пока температура не станет достаточно высокой для поддержания ядерных реакций превращения водорода в гелий. Горение во­дорода в ядре продолжается, пока не истощатся запасы водородного топлива. Для Солнца время жизни составляет приблизительно 10 млрд. лет (около по­ловины которого уже прошло), а для звезды, в три раза более массивной, -только 500 млн. лет.

Дальнейшая эволюция звезды зависит прежде всего от ее массы. Звезды, светимость которых в 10-1000 раз больше светимости Солнца, а радиус обычно превышает радиус Солнца в 10-100 раз, называются гигантами. Звезда становится гигантом, когда исчерпывается запас водородного топли­ва, необходимого для поддержания в ней ядерных реакций синтеза, а начи­нающийся переход к новому энергетическому равновесию вызывает значи­тельное расширение внешних слоев. Поверхностная температура падает, но из-за большого увеличения поверхности полная светимость звезды возраста­ет. Примеры звезд-гигантов - Капелла, Альдебаран и Арктур. Гигантами иногда называют и массивные горячие звезды, которые очень велики по сравнению с Солнцем, даже если они еще не достигли поздней стадии эво­люции.


В массивных звездах каждый раз, когда очередной вид топлива истоща­ется, происходит повышение температуры, достаточное для того, чтобы за­горелось новое, более тяжелое топливо. В конце концов, когда у звезды обра­зовалось железное ядро с массой, примерно равной солнечной массе, новые реакции горения становятся невозможными. На этой стадии сжатие ядра продолжается до тех пор, пока не произойдет катастрофический взрыв сверх­новой. Оставшееся «голое» ядро становится нейтронной звездой, т. е. звездой с массой от 1,5 до 3,0 солнечных масс, которая под действием гравитацион­ных сил коллапсировала до такой степени, что теперь состоит почти полно­стью из нейтронов. Нейтронные звезды имеют в поперечнике всего около 10 км при плотности 1017 кг/м.

В звездах с меньшей массой (таких, как Солнце) температура их центра никогда не становится достаточно высокой, чтобы зажечь водород и гелий во внешних концентрических оболочках. Развивается неустойчивость, которая приводит к отделению внешних слоев звезды от ядра. В результате образует­ся белый карлик, который не имеет внутреннего источника энергии и поэтому продолжает охлаждаться. Описанная схема эволюции характерна для оди­ночных звезд. Членство в двойной или в кратной системе может сильно по­влиять на процесс эволюции звезды, поскольку при этом может иметь место передача массы.

Двойная звезда состоит из двух звезд, вращающихся друг около друга и удерживаемых вместе силой взаимной гравитации. Приблизительно полови­на всех «звезд» на самом деле - двойные или кратные системы, хотя многие из них расположены так близко, что их компоненты по отдельности наблю­даться не могут.

Кратные звезды ~ это группа из трех или нескольких звезд, обращаю­щихся в одной системе, в которой они удерживаются взаимным гравитаци­онным притяжением. Общеизвестный пример - система из четырех звезд Эп­силон Лиры.

Пульсар представляет собой вращающуюся нейтронную звезду с массой, примерно равной массе Солнца, но имеющую диаметр всего около 10 км. Он является источником радиоволн и характеризуется высокой частотой и регу­лярностью всплесков излучения. Время между последовательными импуль­сами составляет от нескольких миллисекунд (у быстрых) до 4 с (у самых медленных). Некоторые пульсары кроме радиоволн генерируют пульсирую­щее излучение и в других диапазонах электромагнитного спектра, в том чис­ле в видимом свете. Больше всего пульсаров находится в шаровых скоплени­ях, где звезды плотно упакованы и гравитационные взаимодействия возни­кают очень легко. По крайней мере, один пульсар, по-видимому, имеет в ка­честве звезды-компаньона другую нейтронную звезду, а еще один имеет два или три компаньона планетарного размера. Пульсары образуются при взры­вах сверхновых, хотя в настоящее время только два из них, пульсар в Крабовидной туманности и пульсар в Парусах, находятся внутри наблюдаемых ос­татков сверхновых.

Черная дыра - предположительно конечная стадия эволюции некоторых звезд, масса которых, а следовательно, и сила тяготения настолько велики, что они подвергается катастрофическому гравитационному коллапсу, т. е. сжатию, которому не могут противостоять никакие стабилизирующие силы (например, давление газа). Плотность вещества в ходе этого процесса стре­мится к бесконечности, а радиус объекта - к нулю. Согласно теории относи­тельности Эйнштейна, в центре черной дыры возникает сингулярность про­странства-времени. Гравитационное поле на поверхности сжимающейся звезды растет, поэтому излучению и частицам становится все труднее ее по­кинуть. В конце концов такая звезда оказывается под «горизонтом событий», который подобен односторонней мембране, пропускающей вещество и излу­чение только внутрь и не выпускающей ничего наружу. Черные дыры можно обнаружить только по резкому изменению свойств пространства-времени около нее. Астрономы полагают, что в нашей Галактике имеется множество черных дыр. Так, считается, что рентгеновское излучение двойной системы Лебедь Х-1 обусловлено тем, что одним из ее компонентов является черная дыра. Гигантские черные дыры, возможно, находятся в центрах некоторых галактик, в том числе и нашей. Очень маленькие черные дыры могли образо­ваться в начальной фазе эволюции Вселенной из сверхплотного состояния. Сегодня поиски черных дыр во Вселенной и их детальное изучение являются одной из важнейших задач космологии, астрофизики и астрономии.

Квазарами называют квазизвездные источники радиоизлучения, испус­кающие поток энергии как сотни нормальных галактик. Их природа еще до конца не изучена. Спектры квазаров характеризуются большим красным смещением. Согласно современным представлениям, квазары - самые уда­ленные из известных нам объектов во Вселенной, которые представляют со­бой тип наиболее ярких активных галактических ядер. У небольшого числа квазаров было обнаружено слабое туманное свечение окружающей галакти­ки. К настоящему времени каталогизировано несколько тысяч квазаров. У некоторых квазаров наблюдается заметное и быстрое изменение светимости.

Системы, состоящие из скопления звезд, пыли и газа образуют галакти­ки. Их полная масса составляет от 1 млн. до 10 трлн. масс Солнца. Истинная природа галактик была окончательно установлена только в 20-х годах XX ве­ка. До этого времени при наблюдениях в телескоп они выглядели как диф­фузные пятна света, напоминающие туманности. Расстояние до ближайшей к нам галактики - туманности Андромеды - составляет 2,25 млн. световых лет. Все галактики содержат звезды, газ и пыль, но в различных пропорциях, и даже в пределах одной галактики распределение этих составляющих может сильно меняться. Большинство галактик имеет ясно различимое ядро, т. е. центр конденсации вещества, испускающий мощный поток энергии или даже взрывающийся; в ряде случаев наблюдаются выбросы вещества со скоростя-ми, близкими к световым. В космическом пространстве сосредоточено ог­ромное количество вещества, которое распределено неравномерно, образуя группы или скопления галактик, причем самые маленькие содержат всего не­сколько галактик, тогда как в более крупных скоплениях их может насчиты­ваться до нескольких тысяч.

Происхождение и эволюция галактик еще до конца непоняты. В совре­менной космологии выделяется несколько типов галактик: спиральные, эл­липтические и неправильные. Лучше всего изучен первый тип. К нему отно­сят галактики, имеющие четко выраженную спиральную структуру, как у ту­манности Андромеды или нашей Галактики (принято писать с большой бук­вы). Большая часть звезд и светящегося вещества образуют спиральные ру­кава, которые также содержат межзвездные пыль и нейтральный водород. Массы почти всех спиральных галактик лежат в диапазоне от 1 до 300 млрд. масс Солнца.

Эллиптические галактики также довольно распространены. Их размеры варьируются в широком диапазоне: от маленьких карликовых эллиптических галактик всего в несколько миллионов солнечных масс до гигантских эллип­тических галактик массой 10 трлн. солнечных. Большая часть их вещества пребывает в виде звезд и горячего газа. Массивные эллиптические галактики находятся в центрах нескольких самых крупных скоплений галактик. Они имеют большое ядро или, возможно, несколько ядер, быстро движущихся относительно Друг друга в пределах протяженной оболочки. Часто это до­вольно сильные источники радиоизлучения. Космологи предполагают, что они могут эволюционировать в квазары.

Местная группа - это совокупность галактик, к которой принадлежит наша Галактика - Млечный Путь, а Солнце в нем - одна из 100 млрд. состав­ляющих его звезд. Доминирующие члены - туманность Андромеды, которая является самой большой и наиболее массивной галактикой, и наша собствен­ная Галактика. В Местную группу также входят Большое Магелланово Обла­ко, лежащее вблизи нашей Галактики, и целый ряд небольших эллиптиче­ских, неправильных и карликовых сферических галактик, которые напоми­нают изолированные шаровые скопления. Она не имеет центрального уплот­нения, а состоит из двух подгрупп, сосредоточенных вокруг двух наиболее массивных ее членов. Местная группа занимает объем пространства с радиу­сом около 3 млн. световых лет. Другие близкие галактики удалены на рас­стояния, вдвое или даже втрое большие.

Радиогалактики являются космическими объектами, отождествляемыми с оптическими галактиками и отличающимися от них мощным потоком ра­диоизлучения, который составляет 10 35 -10 38 Вт, что в 10 тыс, - 1 млн. раз больше, чем радиоизлучения нормальной галактики. На каждый миллион га­лактик приходится одна радиогалактика. В радио галактике Лебедь А, часто считающейся прототипом радиогалактик, имеются два обширных облака ра­диоизлучения, расположенных симметрично с каждой стороны возмущенной эллиптической галактики и простирающихся более чем на 3 млн. световых лет. Механизм генерации энергии радиогалактик еще неизвестен. Маловеро­ятно, что столь большое выделение энергии может быть результатом нор­мальных ядерных реакций в звездах. Ученые предполагают, что в качестве «центрального движителя» этих космических образований работают черные дыры. Радиогалактики тесно связаны с квазарами, многие из которых в ра­диодиапазоне имеют близкие характеристики.

Газовая туманность - светящееся облако газа в межзвездном простран­стве, которое может быть либо эмиссионной, либо отражающей туман­ностями. В прошлом, газовой туманностью называли все галактики, кроме нашей. Теперь же слово «газовая», как правило, опускают, поскольку поня­тие «туманность» связывается только с межзвездными облаками, а не с га­лактиками.

Планеты - массивные несамосветящиеся тела в составе планетной сис­темы, образовавшиеся из окружающей звезду газопылевой материи. К ним относятся тела размерами от нескольких километров (например, астероиды) до объектов с массой, равной 10 массам Юпитера. Более массивные тела пре­вращаются в звезды, так как температура в их центре достаточна для начала реакций термоядерного синтеза. Планеты могут быть твердыми типа внут­ренних планет (Меркурий, Венера, Земля и Марс) или газообразными с не­большим твердым ядром, подобно внешним планетам (Юпитер, Сатурн, Уран и Нептун). Эти восемь планет вместе с Плутоном являются большими планетами Солнечной системы. На Плутоне, хотя и напоминающем твердые планеты, сохранилось значительное количество льда и в Солнечной системе он представляет собой единственный пример большой планеты - ледяного карлика. В пределах Солнечной системы имеется множество малых планет -спутников больших планет, астероидов и небольших ледяных карликов, со­ставляющих так называемый пояс Койпера за пределами Нептуна. Процесс формирования планетных систем во многом напоминает процесс звездообра­зования.

Внесолнечная планета - это несамоизлучающее тело, вращающееся во­круг любой другой звезды, кроме Солнца. Применение методов, позволяю­щих обнаружить небольшие периодические изменения скоростей звезд на основе доплеровского эффекта, позволило получить в 1995-1996 годах аргу­менты в пользу существования внесолнечных планет у нормальных звезд. Вероятно, планеты и их системы - довольно распространенное явление во Вселенной.

Кроме рассмотренных, во Вселенной существуют такие объекты, как космические лучи, кометы, астероиды, метеориты, болиды и др.


№ 10. Туманность Бумеранг - самое холодное место во Вселенной

Туманность Бумеранг расположена в созвездии Центавра на расстоянии 5000 световых лет от Земли. Температура туманности равна −272 °C, что и делает ее самым холодным известным местом во Вселенной.

Поток газа, идущий от центральной звезды Туманности Бумеранг, движется со скоростью 164 км/с и постоянно расширяется. Из-за такого скоростного расширения в туманности такая низкая температура. Туманность Бумеранг холоднее даже реликтового излучения от Большого Взрыва.

Кит Тейлор и Майк Скаррот назвали объект «Туманность Бумеранг» в 1980 году после наблюдения его с англо-австралийского телескопа в обсерватории Сайдинг-Спринг. Чувствительность прибора позволила зафиксировать лишь небольшую асимметрию в долях туманности, откуда появилось предположение об изогнутой, как у бумеранга, форме.

Туманность Бумеранг была подробно сфотографирована космическим телескопом «Хаббл» в 1998 году, после чего стало понятно, что туманность имеет форму галстука-бабочки, но это название уже было занято.

R136a1 находится на расстоянии 165 000 световых лет от Земли в туманности Тарантул в Большом Магеллановом Облаке. Этот голубой гипергигант является самой массивной звездой из всех известных науке. Также звезда является и одной из самых ярких, испуская света до 10 млн раз больше, чем Солнце.

Масса звезды составляет 265 масс Солнца, а масса при образовании - более 320. R136a1 обнаружила команда астрономов из Университета Шеффилда под руководством Пола Кроутера 21 июня 2010 года.

До сих пор остаётся неясным вопрос происхождения подобных сверхмассивных звёзд: образовались ли они с такой массой изначально, либо они образовались из нескольких меньших звёзд.

На изображении слева направо: красный карлик, Солнце, голубой гигант, и R136a1:

Кстати, сверхмассивная чёрная дыра может обладать массой от миллиона до миллиарда масс Солнца. Чёрные дыры являются конечными этапами эволюции массивных звёзд. Фактически они не являются звёздами, так как не излучают тепло и свет и в них более не проходят термоядерные реакции.

№ 8. SDSS J0100+2802 - самый яркий квазар с самой древней черной дырой

SDSS J0100+2802 - квазар, расположенный в 12,8 млрд световых лет от Солнца. Примечателен он тем, что питающая его Чёрная дыра имеет массу в 12 млрд масс Солнца, это в 3000 раз больше черной дыры в центре нашей галактики.

Светимость квазара SDSS J0100+2802 превосходит солнечную в 42 триллиона раз. А Черная дыра является самой древней из известных. Объект образовался через 900 миллионов лет после предполагаемого Большого взрыва.

Квазар SDSS J0100+2802 открыли астрономы из китайской провинции Юньнань при помощи 2,4 м Лицзянского телескопа 29 декабря 2013 года.

№ 7. WASP-33 b (HD 15082 b) - самая горячая планета

Планета WASP-33 b является экзопланетой у белой звёзды главной последовательности HD 15082 в созвездии Андромеды. По диаметру немного больше Юпитера. В 2011 году предельно точно была измерена температура планеты - около 3200 °C, что делает её самой горячей известной экзопланетой.

№ 6. Туманность Ориона - самая яркая туманность

Туманность Ориона (также известная как Мессье 42, M 42 или NGC 1976) - самая яркая диффузная туманность. Ее хорошо видно на ночном небе невооружённым глазом, и ее видно почти в любой точке Земли. Туманность Ориона находится на расстоянии около 1344 световых лет от Земли и имеет 33 световых года в поперечнике.

Открыл эту одинокую планету Филипп Делорм с помощью мощного телескопа ESO. Главная особенность планеты в том, что она находится в космосе совсем одна. Для нас привычнее, что планеты вращаются вокруг звезды. Но CFBDSIR2149 не такая планета. Она одна, и ближайшая к ней звезда расположена слишком далеко, чтобы оказывать на планету гравитационное воздействие.

Подобные одинокие планеты и раньше находились учеными, но большое расстояние мешало их изучению. Изучение одинокой планеты позволит «больше узнать о том, как планеты могут быть выброшены из планетных систем».

№ 4. Круитни - астероид с идентичной Земле орбитой

Круитни - это околоземный астероид, движущийся в орбитальном резонансе с Землёй 1:1, пересекает при этом орбиты сразу трёх планет: Венеры, Земли и Марса. Его также называют квазиспутником Земли.

Круитни был обнаружен 10 октября 1986 года британским астрономом-любителем Дунканом Уалдроном с помощью телескопа Шмидта. Первое временное обозначение у Круитни было - 1986 TO. Орбита астероида была вычислена в 1997 году.

Благодаря орбитальному резонансу с Землёй, астероид пролетает свою орбиту в течение почти одного земного года (364 дня), то есть в любой момент времени Земля и Круитни находятся на том же расстоянии друг от друга, что и год назад.

Опасности столкновения этого астероида с Землёй не существует, по крайней мере, в течение ближайших нескольких миллионов лет.

№ 3. Глизе 436 b - планета из горячего льда

Глизе 436 b обнаружена американскими астрономами в 2004 году. Планета по размерам сопоставима с размерами Нептуна, масса Глизе 436 b равна 22 массам Земли.

В мае 2007 года бельгийские учёные под руководством Микаэля Жийон из Льежского университета установили, что состоит планета в основном из воды. Вода находится в твёрдом состоянии льда под большим давлением и при температуре порядка 300 градусов по Цельсию, что приводит к эффекту «горячего льда». Гравитация создаёт огромное давление на воду, молекулы которой превращаясь в лёд. И даже несмотря на сверхвысокую температуру, вода не способна испаряться с поверхности. Поэтому Глизе 436 b весьма уникальная планета.

Сравнение Глизе 436 b (справа) с Нептуном:

№ 2. Эль Гордо - самая крупная космическая структура в ранней Вселенной

Галактический кластер - это сложная суперструктура, состоящая из нескольких галактик. Кластер ACT-CL J0102-4915, с неофициальным названием Эль Гордо, был открыт в 2011 году и считается самой крупной космической структурой в ранней Вселенной. Согласно последним расчетам ученых, эта система в 3 квадриллиона раза массивнее Солнца. Кластер Эль Гордо находится в 7 миллиардах световых лет от Земли.

Согласно результатам нового исследования, Эль Гордо является результатом слияния двух кластеров, которые сталкиваются на скорости несколько миллионов километров в час.

№ 1. 55 Рака E - алмазная планета

Планету 55 Рака e обнаружили в 2004 году в планетной системе солнцеподобной звезды 55 Рака A. Масса планеты больше массы Земли почти в 9 раз.

Температура на стороне, обращённой к материнской звезде, равна +2400°C, и представляет из себя гигантский океан лавы, на теневой стороне температура составляет +1100°C.

Согласно новым исследованиям, 55 Рака e в своём составе содержит большую долю углерода. Считается, что треть массы планеты составляют толстые слои из алмаза. При этом воды в составе планеты почти нет. Планета находится в 40 световых годах от Земли.

Восход светила на 55 Рака е в представлении художника:

P.S.

Масса Земли равна 5.97×10 в 24 степени кг
Планеты-гиганты Солнечной системы
Юпитер - масса в 318 раз больше земной
Сатурн - масса в 95 раз больше земной
Уран - масса в 14 раз больше земной
Нептун - масса в 17 раз больше земной

Гигантское облако воды, которое находится от земли на расстоянии в 12 миллиардов световых лет, недалеко от черной дыры. Облако содержит запасы воды, в 140 триллионов раз превышающие объем всех земных океанов.

Алмазная планета.
Планета 55 Рака, которая находится в созвездии Рака, планета находится на расстоянии 40 световых лет. Поверхность этой планеты покрыта алмазами.

Планета из горячего льда.
Из за высокой температуры поверхности планеты, вода в атмосфере планеты представлена в виде пара. Внутри вода находится под давлением в состоянии, неизвестном на Земле и становится более плотной, чем лед и жидкая вода. Планета находится на расстоянии 30 световых лет, и вращающаяся вокруг звезды Gliese 436.

Цетыре звёзды в одной системе.
HD 98800 - кратная система, состоящая из четырёх звёзд. Находится в созвездии Чаши на расстоянии приблизительно 150 световых лет от нас. Система состоит из четырёх звёзд типа T Тельца (оранжевые карлики главной последовательности).

Звезды, которые, движутся со скоростью триллионы миль в час.
Ударная волна, образованная такой звездой-пулей, можно иметь размер от 100 миллиардов до триллионов миль (приблизительно 17-170 диаметров Солнечной системы, измеренной по орбите Нептуна), в зависимости от оценки расстояния до Земли. Обнаруженны были телескопом Хаббл.

Загадочное облако — «Химико» (Himiko).
Оно содержит примерно в десять раз больше вещества, и находящееся на расстоянии 12,9 млрд световых лет от Земли. Облако имеет большую массу и протяженность – его поперечник составляет около 55 тыс. световых лет.

Большая группа Квазар.
Крупномасштабная структура Вселенной, представляющая собой совокупность мощнейших и активных ядер галактик, находящихся в пределах одной галактической нити.

Гравитационные линзы.
Астрономическое явление, при котором изображение какого-либо удаленного источника (звезды, галактики, квазара) оказывается искаженным из-за того, что луч зрения между источником и наблюдателем проходит вблизи какого-то притягивающего тела.

Силуэт Микки Мауса на Меркурии.
Фотография была сделана 3 июня 2012 при помощи узкоугольной камеры NAC в рамках кампании по съемке поверхности Меркурия при малых углах падения солнечных лучей.


Температура звезды примерно такая же, как у чашки чая. Находится она на расстоянии в 75 световых лет от Земли.


Они находящаяся в туманности Орла. Столпы Творения были уничтожены взрывом сверхновой примерно 6 тысяч лет назад. Но так как туманность расположена на расстоянии 7 тысяч световых лет от Земли, наблюдать Столпы можно будет ещё около тысячи лет.

Магнетары — хвехда, обладающая исключительно сильным магнитным полем.


Вырваться и покинуть черную дыру никто не может, даже объекты движущиеся со скоростью света, в том числе кванты самого света из-за ее гравитации и огромных размеров.

Туманность Бумеранг расположена в созвездии Центавра на расстоянии 5000 световых лет от Земли. Температура туманности равна −272 °C, что и делает ее самым холодным известным местом во Вселенной.


Поток газа, идущий от центральной звезды Туманности Бумеранг, движется со скоростью 164 км/с и постоянно расширяется. Из-за такого скоростного расширения в туманности такая низкая температура. Туманность Бумеранг холоднее даже реликтового излучения от Большого Взрыва.

Кит Тейлор и Майк Скаррот назвали объект «Туманность Бумеранг» в 1980 году после наблюдения его с англо-австралийского телескопа в обсерватории Сайдинг-Спринг. Чувствительность прибора позволила зафиксировать лишь небольшую асимметрию в долях туманности, откуда появилось предположение об изогнутой, как у бумеранга, форме.

Туманность Бумеранг была подробно сфотографирована космическим телескопом «Хаббл» в 1998 году, после чего стало понятно, что туманность имеет форму галстука-бабочки, но это название уже было занято.

R136a1 находится на расстоянии 165 000 световых лет от Земли в туманности Тарантул в Большом Магеллановом Облаке. Этот голубой гипергигант является самой массивной звездой из всех известных науке. Также звезда является и одной из самых ярких, испуская света до 10 млн раз больше, чем Солнце.

Масса звезды составляет 265 масс Солнца, а масса при образовании - более 320. R136a1 обнаружила команда астрономов из Университета Шеффилда под руководством Пола Кроутера 21 июня 2010 года.

До сих пор остаётся неясным вопрос происхождения подобных сверхмассивных звёзд: образовались ли они с такой массой изначально, либо они образовались из нескольких меньших звёзд.

На изображении слева направо: красный карлик, Солнце, голубой гигант, и R136a1:

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости