Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости

Изобретение относится к энергомашиностроению и позволяет повысить топливную экономичность и снизить выбросы токсичных газов в свободнопоршневых двигателях внутреннего сгорания. В автогенном генераторе (1), в котором электроэнергия генерируется при помощи электромагнитного сцепления между неподвижными обмотками (2) и постоянными магнитами, которые движутся внутри при возвратно-поступательном движении одного или более поршней двухтактного двигателя внутреннего сгорания, цилиндры (5), спаренные с поршнями (4), имеют коническую форкамеру (10), открытую в направлении цилиндров (5). Двигатель работает с изменяемыми ходами сжатия и магниты (3) и обмотки (2) устроены так, что соотношение между количествами механической энергии, используемой для производства электроэнергии за два разных хода магнитов (3), равно соотношению между двумя степенями сжатия, получаемыми в цилиндрах (5) относительно двух разных ходов, осуществляемых поршнями (4), едиными с указанными магнитами (3), умноженным на соотношение между двумя значениями общих КПД двигателя относительно указанных степеней сжатия. 15 з.п.ф-лы, 9 ил.

Эта заявка относится к области автогенных генераторов электроэнергии, и более конкретно к генераторам, в которых механическая энергия, создаваемая возвратно-поступательным движением поршней двигателя внутреннего сгорания без коленчатого вала, трансформируется в электрический ток за счет взаимодействия постоянных магнитов, как единого целого с вышеупомянутыми поршнями при их движении, с неподвижными обмотками, которые циклически погружаются в магнитное поле, связанное с указанными магнитами. Этот тип генераторов, очевидно, пригоден для производства электрического тока, который может затем использоваться либо непосредственно, например, для освещения или отопления, либо опосредованно для подачи энергии на электродвигатели, которые могут использоваться в различных типах тяговых средств на земле или воде, или в воздухе, или в других вариантах применения. Однако используемые генераторы требуют точного выполнения с точки зрения выходного напряжения и настройки для сведения к минимуму шумов и причинения вреда окружающей среде. Примеры уже известных типов таких генераторов имеют значительные ограничения с точки зрения требований, которые упомянуты выше. Характерный пример генератора дан в заявке GB 2219671A. Этот генератор также производит электроэнергию при помощи возвратно-поступательного движения магнитов относительно неподвижных обмоток, с магнитами, составляющими единое целое, при движении, с поршнями двигателя внутреннего сгорания без коленчатого вала, но с точки зрения конфигурации деталей и их предназначения он существенно отличается от генератора, описанного ниже: магниты колеблются относительно неподвижной точки, лежащей в срединной плоскости поперечного сечения устройства, содержащего обмотки, и дополнительно в альтернативном варианте могут также применяться неподвижные обмотки для производства электроэнергии, которая может применяться вне генератора, или для потребления электроэнергии для выталкивания указанных выше магнитов, с тем, чтобы сделать возможным возвратное движение поршня в такте сжатия. Таким образом ясно, что размеры устройства в соответствии с подаваемой энергией значительно больше, чем размеры генератора, соответствующего настоящему изобретению, в котором, как будет видно ниже, электрическая энергия производится как при вхождении магнитов в обмотки, так и при их возвращении в противоположном направлении, и в котором пуск и регулирование работы устройства могут осуществляться просто изменением количества топлива на цикл работы. Общая регулировка устройства, соответствующего Британскому патенту, однако, как в части внутреннего сгорания, так и в электромагнитной части, очень сложна и дорога, поскольку давление и количество подаваемого воздуха, количество топлива и значения характеристик, находящиеся в определенном соотношении с током, проходящим по обмоткам (полное сопротивление, сопротивление, направление и т.д.), должны регулироваться при помощи электронных средств, цикл за циклом. Регулирование количества впускаемого воздуха, например, в случае внутреннего сгорания бензина должно осуществляться приблизительно путем измерений способом определения количества химических веществ, участвующих в химической реакции как для двух тактов, так и для четырех тактов, которые осуществляются независимо от вышеупомянутых значений электрических параметров в районе впускных отсечных клапанов для воздуха и бензина. Значения электрических параметров, о которых идет речь, должны регулироваться последовательно, цикл за циклом, в соответствии с результатами только что описанной первоначальной регулировки. Это предусматривает применение подходящего компьютерного оборудования, способного хранить и обрабатывать большой объем данных, которое делает устройство как дорогим, так и чувствительным к повреждениям. Значения электроэнергии и напряжения, вырабатываемые в ходе различных циклов, которые в значительной мере зависят от частоты колебания магнитов, не являются непосредственно или автоматически пропорциональными значению механической энергии, производимой двигателем при изменении такта сжатия. Это в целом предусматривает применение крупногабаритных аккумуляторных батарей, расположенных между частью внутреннего сгорания, которая их подзаряжает, и электродвигателями, которые питаются аккумуляторными батареями. Функциональная схема двигателя внутреннего сгорания, кроме отсутствия коленчатого вала, является обычной, и отсюда задача состоит в достижении хорошей общей эффективности путем доведения до максимума энергии на цикл для получения требуемых высоких температур и давлений. В то время как это приемлемо строго с точки зрения только энергии, это не так с точки зрения загрязнения окружающей среды, поскольку практически невозможно предотвратить образование токсичных составов, таких как закись азота и окись углерода при работе устройства на установленной смеси при высоких температурах внутри цилиндра. Другой подобный пример линейного генератора включает двигатель Джарретта, в котором, хотя управление "возвращением" поршня под давлением, создаваемым электрическим током, представляет собой меньшую проблему, существуют все вышеупомянутые недостатки, плюс тот факт, что для того, чтобы дополнительно не увеличивать потери, которые уже высоки, свежий воздух для цикла поступает в цилиндр при помощи акустического резонанса, которого можно достичь только в ограниченном диапазоне частот цикла, и который влечет за собой то, что этот тип двигателя запускается только электрическим способом, и после этого работает с зафиксированной очень высокой компрессией, составляющей соотношение 26:1, что означает, что двигатель может работать только на сырой нефти, и только на очень высоких зафиксированных скоростях, при этом ему необходимо охлаждение, существуют проблемы с частицами и т.д. Автор настоящего изобретения пришел к заключению, что для одновременного разрешения проблем вредных выбросов, сложности конструкции, необходимости применения промежуточных аккумуляторных батарей, возможности предварительной регулировки и низкой эффективности нужен генератор, в котором электромагнитная часть и часть внутреннего сгорания должны вместе образовывать функциональную единицу и составлять единое целое, при этом движение поршня с изменяемыми тактами будет приводить к тому, что количество механической энергии, производимой частью внутреннего сгорания, будет точно соответствовать количеству энергии, поглощаемой электромагнитной частью при производстве электрического тока для каждого такта, согласно законам термодинамики, сгорания газов и электромагнетизма. На основании этого замысла, с применением одной или более форкамер в дополнение к существующим цилиндрам было создано сверхпростое устройство, управляемое электронным средством, прежде всего, путем управления только количеством топлива, впускаемого за один цикл, и положением конца такта сжатия поршня или поршней. Все это было достигнуто, как будет описано более подробно далее, с очень низкими максимальными, средними и минимальными температурами применяемых термодинамических циклов (около половины от обычных значений для двигателей внутреннего сгорания), и отсюда фактически с нулевым загрязнением окружающей среды и с очень высокой общей эффективностью работы части внутреннего сгорания при всех рабочих скоростях. Основываясь на вышесказанном, автор изобрел объект данного описания, который фактически относится к автогенному генератору электроэнергии, в котором образование энергии достигается благодаря соединению электромагнитного средства, включающего неподвижные обмотки, с одним или более постоянных магнитов, движущихся вместе с возвратно-поступательным движением одного или более поршней двухтактного двигателя внутреннего сгорания, который может работать с изменяемым ходом сжатия, каждый поршень завершает один рабочий ход в результате сгорания топлива и расширения газов в цилиндре, и один ход сжатия в результате эффекта действия составляющей, возвращающей механическую энергию, отличающийся изложенным в отличительной части п. 1 прилагаемой формулы изобретения. Преимущества, упомянутые выше, будут очевидны из подробного описания генератора, приведенного ниже со ссылками на прилагаемые иллюстрации, в которых: фиг. 1 изображает продольный схематический разрез одного примера конструкции одноцилиндрового двухтактного генератора согласно изобретению; фиг. 2 изображает продольный схематический разрез другого варианта конструкции с двумя поршнями, обращенными друг к другу с одной общей камерой сгорания; фиг. 3 изображает схематический вид в плане генератора согласно изобретению, оснащенного четырьмя поршнями, объединенных парами, с двумя камерами сгорания; фиг. 4 изображает продольный разрез направляющей конструкции, показывающий размещение магнитов и неподвижных обмоток; фиг. 5 изображает диаграмму расхода сгорающего топлива, как функции весового соотношения воздуха/топлива в смеси; фиг. 6 изображает продольное сечение примера конструкции с одним цилиндром, оснащенной двумя вспомогательными цилиндрами для выпуска выхлопных газов; фиг. 7 изображает кривую общей эффективности двигателя внутреннего сгорания в качестве генератора согласно изобретению; фиг. 8 изображает кривую удельного расхода топлива; фиг. 9 изображает тип форкамеры в форме усеченного конуса в конфигурации, имеющей два впрыскивающих сопла. Фиг. 1 изображает генератор, в котором магниты 3 и неподвижные обмотки 2 расположены так, что их электромагнитное сцепление сокращается при увеличении рабочего хода поршня 4, но увеличивается при увеличении хода сжатия поршня 4. Возможны, однако, другие конструкции, в которых части соединены так, что происходит обратное, то есть когда электромагнитное сцепление между магнитами 3 и обмотками 2 увеличивается при увеличении рабочего хода и наоборот. Генератор состоит из цилиндра 5, в котором поршень 4 двигается (фиг. 1) с двумя одинаковыми устройствами магнитов 3, расположенных симметрично относительно оси цилиндра, единых с ней при помощи ответвления 4". Эти магниты 3 погружаются в течение циклов при ходе сжатия и рабочем ходе, осуществляемыми поршнем 4, это погружение изменяется под углом в зависимости от длины указанного хода внутри двух неподвижных обмоток 2, которые таким образом идентичны и симметричны. Поскольку ход сжатия увеличивается, как установлено, электромагнитное сцепление между магнитами 3 и связанными с ними обмотками 2 увеличивается, и наоборот, уменьшается по мере увеличения рабочего хода. Движение поршня 4 вызывается в одном направлении расширением сжатого газа в соответствии с эффектом сгорания топлива, и в другом направлении - действием средства, предназначенного для возвращения механической энергии, например, одной или более скрученных пружин или других средств, включая электромагнитные средства известного типа, в которых используется электрическая энергия для возвращения механической энергии поршню, например типов генератора, уже известного и на который были сделаны ссылки ранее, даже если последнее устройство более сложное и дорогое. Топливо, подающееся через впрыскивающее сопло 14, распыляется так, что оно насыщает по меньшей мере часть объема воздуха, содержащегося в форкамере 10, которая имеет по существу коническую конфигурацию с основанием 10", открытым в сторону цилиндра 5. Узел поршень/магнит удерживается двумя средствами 15, 16 с трением качения (скольжения), которые могут крепиться к корпусу указанного цилиндра 5 и которые допускают ход поршня, как описано выше, с минимальными механическими потерями. Глядя на ту же фиг. 1, на которой изображен генератор 1 с двухтактным двигателем в нерабочем положении, легко описать его действие: все, что требуется для запуска, это впрыск заранее установленного количества должным образом распыленного топлива в форкамеру 10 и, только для цикла запуска, в цилиндр 5, и образование искры между электродами 13, расположенными вблизи основы 10" конуса, образующего форкамеру 10. "Взрыв" смеси воздуха и топлива выдвигает узел поршень/магнит в направлении указанных пружин 7, сжимая их, и эти пружины затем разжимаются, возвращая такое же количество "поглощенной" кинетической энергии так, что поршень 4 завершает обратный ход сжатия. Протяженность этого хода сжатия зависит от кинетической энергии, приобретенной поршнем 4 в результате указанного первоначального "взрыва", от которого количества энергии, которая трансформируется в электроэнергию в обмотках 2 по ходу поршня, проходят в обоих направлениях, при этом уменьшаются различные потери,
Результирующая остаточная кинетическая энергия поршня 4 затем преобразуется в ход сжатия, имеющий определенную длину. В конце этого процесса сжатия плотность и отсюда масса воздуха, содержащегося внутри форкамеры 10, увеличится до величины, соответствующей полученной степени сжатия, и количество бензина, эквивалентное или немного большее, чем соответствующее количество, необходимое для получения нужной химической реакции, затем впрыскивается при помощи впрыскивающего сопла 14, и это топливо затем воспламеняется электродами 13. Если электромагнитное устройство имеет конструкцию согласно изобретению, то есть такую, что для этого хода сжатия и для соответствующей ему кривой скорости хода поршня, которая увеличивается с увеличением компрессии по понятным физическим причинам, механическая энергия, поглощаемая указанным электромагнитным устройством для производства электроэнергии при ходе поршня 4 вперед и назад, будет равной энергии, генерируемой в течение рабочего хода (сетка выходной мощности), поршень 4 завершит один рабочий ход плюс один возвратный ход сжатия, останавливаясь точно в той же точке, что и раньше, без изменений степени сжатия. Таким образом, при впрыске одинакового количества топлива при неограниченном количестве циклов обеспечивается устойчивая, стабильная работа генератора. Для увеличения количества электроэнергии, производимой за цикл, достаточно лишь увеличить на предопределенное значение количество топлива, впрыскиваемого в форкамеру 10. Увеличение производимой при сгорании топлива энергии по сравнению с последним циклом при работе в постоянном режиме разделяется на увеличение количества произведенной электроэнергии и увеличение степени сжатия, которая устанавливается на новом уровне, который, в свою очередь, зависит исключительно от нового положения, занимаемого поршнем 4 в конце хода сжатия, и количество топлива, соответствующее большей массе воздуха, содержащегося в форкамере 10, должно затем впрыскиваться для соответствия новым условиям, и режим работы будет оставаться стабильным в новых условиях, обеспечивая то, что будет получено подтверждение описанного выше процесса, другими словами, вновь при этом новом ходе сжатия и относительной кривой скорости цилиндра 4 энергия, поглощаемая электромагнитным устройством (то есть, количество электрической энергии, генерируемой за цикл, разделенное на электромагнитный КПД) в новых условиях, при новом количестве энергии, вырабатываемой при сгорании топлива, остается точно такой же. Очевидно, что это относится и к замедлению и уменьшению хода поршня, хотя в этом случае количество бензина на цикл должно быть уменьшено вместо увеличения. Изобретатель рекомендует увеличение насыщения воздуха в форкамере 10 в постоянном режиме работы примерно на 20% по сравнению с количеством, строго необходимым для химической реакции, то есть соотношение воздуха к бензину должно быль равным примерно 12,2. В этих условиях быстрое ускорение и замедление хода поршня 4 может достигаться увеличением и уменьшением количества топлива, как было описано, на величину до 14% по сравнению с предшествующим циклом, каждый раз поддерживая такое состояние смеси в форкамере 10, которое обеспечивает скорость сгорания, как можно более близкую к оптимальной (см. фиг. 5), с относительными преимуществами конфигурации цикла и его термодинамического КПД. Если в форкамере 10 при изменении скорости применяются обогащенные смеси, их влияние относительно вредных выбросов на генератор, соответствующий изобретению, будет существенно уменьшено: воспламенение фактически вызывает немедленное и быстрое расширение с относительным сдерживанием роста температуры смеси, которая отдельно от прочего смешивается с очень значительным объемом воздуха, содержащегося в цилиндре 5, который имеет относительно низкую температуру при любых рабочих условиях. В качестве ориентира, в экспериментальном прототипе с максимальной степенью сжатия = 8,5, для этой степени сжатия, находящейся на постоянном уровне, максимальная температура цикла примерно равна 765 o C (1029 К), и температура выхлопа примерно равна 164 o C (437 K), c () v = 10. Инженеры, работающие в данной области техники, не будут иметь трудностей с расчетом образования токсичных веществ в результате сгорания топлива (NO x , CO), фактически равных нулю в этих условиях. Описанные процедуры сгорания, которые стали возможными при использовании форкамеры 10, также допускают изменение выработки энергии за цикл с сохранением прежней степени сжатия при ходе поршня, или наоборот, без других регулировок и, как установлено, без отрицательных последствий, если только энергия генератора не подается на фиксированную нагрузку омического типа, в случае чего управление работой генератора ограничивается описанным выше, а на нагрузку, которая может изменяться в зависимости от специфических закономерностей, например, касающихся электродвигателей, или явления магнитного насыщения. В этом случае может следовать такая же процедура или изменяется количество топлива, подаваемого за цикл с изменением компрессии, но с сохранением прежнего хода поршня, или, наоборот, для приспособления к нарастающей нагрузке в случаях, когда, например, мгновенный опрокидывающий момент быстро отклоняется от движущего момента, и нагрузка вследствие этого изменяется, влияя на количество энергии, производимой генератором за один цикл. Инженеры в данной области техники могут по своему усмотрению определять рабочие кривые различных характеристик, геометрические размеры двигателя и деталей генератора и тип регулировки в соответствии с типом нагрузки, так же как и значение в процентном соотношении увеличения или уменьшения количества топлива на цикл, которое должно обеспечиваться в различных рабочих ситуациях, с преимуществом, заключающимся в том, что в генераторе, согласно изобретению, в рамках области его применения, при увеличении хода сжатия эффективное напряжение на концах обмотки увеличивается по одинаковым кривым, но на более высоком уровне, чем до этого. Это также относится к количеству энергии за цикл в простейшем случае, в котором нагрузка является чисто омической нагрузкой. Очевидно, что вышеупомянутый однофазный ток, производимый генератором, может выпрямляться диодами или модулироваться другими способами с применением преобразователя в зависимости от требований пользователя, таким образом допуская непосредственную подачу электроэнергии на электродвигатели транспортных средств без необходимости применения промежуточных аккумуляторных батарей. Все, что нужно для регулировки двигателя внутреннего сгорания генератора 1, согласно изобретению, - это зафиксировать положение конца хода сжатия поршня 4 и ввести эти данные в центральный электронный блок (не показан), который регулирует количество топлива, подаваемого за цикл впрыскивающим соплом 14 в точной зависимости от положения, достигнутого поршнем 4 в ходе предшествующего цикла, и/или нагрузки, увеличивая или уменьшая его как требуется, если это необходимо, путем подачи команд на увеличение или уменьшение количества топлива, например, путем изменения углового или линейного положения педали акселератора или другого средства, выполняющего подобную роль. Будет отмечено, что для двигателя мощностью около 35 л.с., сконструированного в соответствии с указанными параметрами и с изменением количества топлива за цикл, эквивалентным указанным ранее 14%, переход от минимальной выходной мощности к максимальной происходит менее чем за 2 сек. Однако, если подача топлива прерывается полностью, поршни останавливаются после очень короткого остаточного хода "по инерции" в положении, в котором компрессионное сопротивление газа, находящегося в цилиндре 5, эквивалентно и противостоит действующей силе притяжения между движущимися магнитами 3 и другими намагниченными частями, или даже просто ферромагнитами, соединенными с неподвижными обмотками 2. Последние упомянутые части не показаны на чертежах, поскольку они могут значительно изменяться в конфигурации и устройстве в зависимости от желания дизайнера, который, будучи специалистом в данной области техники, не будет иметь трудностей в определении размеров и расположения этих частей. Стоит повторить, что, очевидно, для обеспечения правильной работы генератора соотношение между количествами механической энергии, поглощаемой генератором (эквивалентными количествам произведенной электроэнергии, разделенным на соответствующие электромагнитные КПД), при работе с двумя различными ходами сжатия в двигателе внутреннего сгорания, будут по существу равными соотношению между двумя соответствующими степенями сжатия, умноженными на соотношение между двумя выходными мощностями самого двигателя относительно этих степеней сжатия. Для примера в цифрах:
Допустим, что для двух различных ходов поршня (и отсюда - соединенных с ними магнитов), две полученные степени сжатия эквивалентны 8,5 (:1) и 3,6 (: 1) и что значения общего КПД двигателя внутреннего сгорания составляют 0,46 и 0,30 относительно этих степеней сжатия. Для выполнения представленных задач магниты и обмотки должны иметь размеры, также соответствующие типу нагрузки, их электрические значения могут контролироваться так, что соотношение между количествами энергии, потребляемыми электромагнитной частью генератора за два разных относительных цикла, то есть в течение одного хода сжатия и одного рабочего хода поршня соответствует указанным степеням сжатия, эквивалентным 8,5/3,6 0,46/0,30 = 3,6. Другими словами, механическая энергия, потребляемая магнитами за один цикл движения, соответствующего степени сжатия 8,5, должна быть в 3,6 раза больше, чем механическая энергия, потребляемая за цикл, соответствующий степени сжатия 3,6. Это означает, что два разных количества топлива, которые могут смешиваться приблизительно в объемах, необходимых для химической реакции, с двумя разными значениями масс воздуха, содержащегося в форкамере в соответствии с указанными степенями сжатия, будут давать необходимое количество энергии, сетку выходной мощности для движения магнитов при производстве электроэнергии. Если нагрузка между обмотками является чисто омической нагрузкой, этого можно легко добиться простой подгонкой физических размеров и конфигурации магнитов и обмоток, как описано ниже, и таким образом это происходит автоматически при каждом ходе сжатия. Иным способом, количество топлива за цикл и/или электрические значения, относящиеся к нагрузке, могут изменяться, как описывалось ранее. Внутренний КПД реально действующей части генератора определяет количество электроэнергии, реально вырабатываемой с разными ходами сжатия двигателя внутреннего сгорания. Вышеупомянутое может быть достигнуто физически, например, путем увеличения количества витков обмоток 2 как линейно, так и следуя другим пригодным кривым в направлении погружения в них магнитов 3 (см. стрелку на фиг. 4), формируя конфигурацию магнитов 3 в соответствии с/или изменениями электрических значений относительно нагрузки. Однако возможны другие конфигурации, создаваемые специалистами в данной области техники, включая применение нескольких магнитов в форме параллелепипеда и неподвижных обмоток (фиг. 4), имеющих такие устройство и размеры, что электроэнергия, генерируемая за один цикл при их относительном движении для разных ходов поршня (которые равны интегралу Vidt за время цикла), следует кривой, конфигурация которой может выпрямляться путем приведения ее в соответствие кривой энергии, вырабатываемой за один цикл двигателя внутреннего сгорания (сетке выходной мощности) путем изменения, например, толщины магнитов, их ширины и/или отверстия для воздуха (Т на фиг. 4) в направлении движения. Нет необходимости выполнять эти изменения: конструктор может также решить применять магниты, имеющие параллелепипедную конфигурацию, изменяя часть объема воздуха, смешиваемого в форкамере, и/или количество топлива, применяемого для его насыщения так, что количество энергии, генерируемой двигателем при любой скорости, оказывается таким же, как и используемое генератором для производства электроэнергии. Это осуществляется особенно легко, если нагрузка является чисто омической нагрузкой с постоянным значением (фиг. 4). Тип сгорания, получаемого с применением форкамеры 10, работающей, как описано, или, предпочтительно, двух форкамер, расположенных диаметрально противоположно и обращенных друг к другу 110 (см. фиг. 9), более подобен обеспечиваемому горелкой, чем обычным внутренним сгоранием в двигателе внутреннего сгорания, и, как указано, представляет очень низкую температуру внутри цилиндра, что вместе с обилием кислорода, необходимого для завершения сгорания, в значительной степени гарантирует отсутствие токсичных продуктов, таких как CO, HC и NO x . Форкамеры, показанные на фиг. 1, 2 и 6, имеют коническую конфигурацию и только одно впрыскивающее сопло 14, расположенное в вершине конуса, но иногда может быть полезным применение форкамер, которые, например, имеют конфигурацию субцилиндрического или усеченного конуса с впрыскивающим соплом 111, установленным в предопределенном положении перпендикулярно оси форкамеры (фиг. 9). Если цилиндр 9 соединяется при помощи соответствующих каналов 112 с закрытым основанием 113, находящимся с обратной стороны, не обращенной к указанному цилиндру 9, существует возможность насыщать до необходимой степени лишь часть общего объема воздуха, содержащегося в форкамере. Второе впрыскивающее сопло 14, установленное в указанное закрытое основание 113, может применяться только для первоначального пускового цикла. В этой последней конфигурации устройства и с обращенными друг к другу форкамерами существует возможность полностью устранить остатки HC благодаря очень сильным завихрениям, образующимся в результате столкновения двух объемов смеси при ее расширении и сгорании. Применение одного или более впрыскивающих сопел также возможно. Описанный процесс относится к случаям, когда двигатель внутреннего сгорания питается топливами с низкой температурой воспламенения, такими как бензин, спирты или газообразные топлива, но дизельное или ему подобные топлива также могут применяться; для этого применяются два впрыскивающих сопла в одной форкамере (как на фиг, 9), причем первое сопло применяется для впрыскивания бензина, например, через определенные промежутки времени, только в переходный период запуска двигателя, пока не достигнута адекватная степень сжатия для самовоспламенения дизельного топлива, которое зачем впрыскивается вторым соплом. Такое решение может рекомендоваться в случае со стационарными высокопроизводительными генераторами, в которых максимальная выходная мощность может преобладать по важности над проблемой выброса частиц (которая реально может быть уменьшена за счет частичной рециркуляции выхлопных газов, как описано ниже). С таким способом работы вновь могут поддерживаться очень низкие температуры по сравнению с подобными двигателями обычного типа. Уже было отмечено, как соединение поршень/магнит может поддерживаться с возможностью движения, например, двумя или более втулками 15 с трением качения, которые скользят вдоль направляющих стержней 16 (фиг. 1), или другими подобными средствами для сведения к минимуму трения и в этом случае нет необходимости обеспечения смазкой любой из движущихся частей ввиду низких рабочих температур. Система охлаждения также не требуется и фактически, целесообразно изолировать двигатель внутреннего сгорания, чтобы его работа была адиабатической. Двигатель внутреннего сгорания является двигателем двухтактного типа, поскольку, как мы видели, для каждого цикла требуется впуск воздуха и выпуск из цилиндра или цилиндров. Одно решение, предлагаемое автором, предполагает достижение этого при помощи движения вспомогательного выпускного поршня 19, показанного на фиг. 6, который при движении составляет единое целое с поршнем 4 двигателя и который во время хода сжатия поршня втягивает воздух внутрь цилиндра 20, который удерживает воздух при помощи одностороннего клапана 21, в то время как при рабочем хода упомянутого поршня 4 он сжимает этот воздух до того момента, когда второй односторонний клапан 22 впускает воздух в форкамеру 10 и соответствующий цилиндр 5 вследствие падения давления внутри цилиндра 5 двигателя. С таким устройством без проблем может достигаться значение эффективности выпуска, приближающееся к 0,90, и, что более важно, оно остается постоянным при любом ходе сжатия, и отсюда - при любом количестве топлива за цикл. Аналогичный результат может быть достигнут с вспомогательным поршнем 19", показанным на фиг. 9, который составляет единое целое с поршнем 6 и использует часть указанного цилиндра 9 двигателя в качестве вспомогательного цилиндра 20", в соответствии с хорошо известным в данной области техники способом работы двухтактных двигателей с внутренним выпуском выхлопных газов. Это решение, показанное на фиг. 3, в случае с противоположным расположением поршней, описано ниже. Поскольку эффективный рабочий ход поршней 4, 6 двигателя эквивалентен только соответствующей длине цилиндров 5, 9, тогда как ход сжатия вспомогательных поршней 19, 19" равен сумме этой длины и хода сжатия пружин, на этапе разработки устройства диаметр вспомогательного поршня 19, 19" может быть выбран большим, равным или меньшим, чем диаметр поршня двигателя, в зависимости от того, полный или только частичный выпуск газообразных продуктов сгорания необходим для данного диапазона скоростей. Например, в прототипе, упомянутом ранее, имеющем вспомогательный поршень 19 (фиг. 6), который имеет одинаковый диаметр с поршнем 4 двигателя, полный выпуск выхлопных газов происходит тогда, когда ход сжатия соответствует степени сжатия, эквивалентной 3,5:1, и частичный выпуск с уменьшенным количеством воздуха, впущенного при меньшем ходе поршня, происходила при минимально допустимой степени сжатия, эквивалентной 1,6:1, когда выпуск достигает лишь 50% объема цилиндра. Частичная рециркуляция выхлопных газов при более низких степенях сжатия служит, как было обнаружено, для увеличения протяженности такта, поскольку ход поршня уменьшен, для сохранения температур, и отсюда - длительности сгорания, достаточно высокими для того, чтобы избежать образования HC в выхлопных газах в переходном состоянии с низким давлением при запуске генератора 1. Для оптимальной работы устройства будет полезно применять датчики измерения температуры цилиндра и давления, причем первый должен применяться для небольшого изменения количества впускаемого топлива при холодном двигателе (при запуске), а второй - вновь в зависимости от положения поршня в конце хода сжатия - для изменения преобладания топливного насоса с целью получения эффективного впрыска, выверенного для всех рабочих режимов. Эти компоненты не показаны на чертежах, поскольку они известны и легко могут быть выполнены специалистом в данной области техники. Несмотря на все вышеупомянутое, для дополнительного упрощения конструкции автогенного генератора, соответствующего изобретению, и для устранения ограничивающих обратных действий и/или одновременно вибраций, целесообразно применять одну или более пар поршней 6, 6" обращенных друг к другу, предпочтительно, с единой общей камерой сгорания 9 (фиг. 2). В этом случае можно иметь только одну форкамеру 10 (или две форкамеры 111, обращенные друг к другу, как показано на фиг. 9), расположенную в центре с продольной осью h, перпендикулярной оси k поршней 6, 6". Для обеспечения должной синхронизации между несколькими парами поршней во время работы, при необходимости, автор предлагает выполнить поршни 6, 6" как единое целое при помощи соединительных средств 8, 8" (фиг. 3), эти поршни в данный момент цикла работают в одном направлении (практически - одна половина поршней). Если в конструкцию включены компоненты для возвращения механической энергии, то есть пружины 7, в описанном случае, так, что их положение может регулироваться в направлении оси К движения поршней, спаренных с ними, то за цикл могут производиться разные количества электроэнергии без изменения требуемой частоты или частота может меняться при неизменном цикле, соответствующем оптимальной эффективности, путем изменения длины хода поршней и отсюда - изменения времени, необходимого для завершения хода. Осуществление непрерывного отслеживания скорости и синхронизации поршней также означает, что ход поршня может изменяться микрометрически так, что он может поддерживаться постоянным и должным образом синхронизированным. Очевидно, что для достижения этого последнего результата достаточно того, чтобы положение пружин, соединенных только с одной половиной поршней, могло регулироваться, то есть тех поршней, которые соединены как единое целое при помощи соединительных средств 8, показанных на фиг. 3. Средством, пригодным для указанной регулировки, может быть, например, шаговый двигатель или электродвигатель постоянного тока 17, подсоединенный при помощи системы винтов и внутренней принимающей резьбы, действующих в качестве линейного повторителя для компонента 18, соединенного как единое целое с соответствующей пружиной 7. Автор также предусмотрел дополнительные средства для предотвращения вибрации, возникающей вследствие кратковременной потери синхронизации между двумя обращенными друг к другу поршнями. Фактически при соединении механических частей генератора, которые действуют в качестве основания и местоположения пружин 7 (на фиг. 2 эти части состоят из корпуса 11, образующего корпус цилиндров 5 и 5"), с землей или с компонентом, являющимся опорой генератора, при помощи соединения 12, обладающего предопределенной ограниченной эластичностью в направлении движения поршней 6, 6", эластичного прогиба соединения 12 при должной синхронизации поршней не происходит, поскольку силы, воздействующие в противоположных направлениях на две пружины 7, соединенные с двумя обращенными друг к другу поршнями, всегда равны друг другу. Однако, если один из двух портной движется раньше другого, это вызовет в первую очередь воздействие силы на соответствующую пружину и затем на эластичные соединения 12, которые будут извлекать часть кинетической энергии, которую должна поглощать пружина, и затем возвращать соответствующий поршень в результате эффектов упругого гистерезиса под воздействием сжатия пружин. Это влечет за собой замедление возвратного хода поршня и его постепенную синхронизацию с другим (задержавшимся) обращенным к нему поршнем. Очевидно, эта корректировка синхронизации влечет потери, хотя и слабые, общего энергетического баланса, и таким образом целесообразно применять электронный способ, как было указано выше, изменения возвратного положения пружины для обеспечения точной первоначальной синхронизации. В заключение этого описания приглашаем читателя взглянуть на диаграммы (фиг. 7) общего КПД двигателя внутреннего сгорания генератора, соответствующего изобретению, и его удельного потребления энергии (фиг. 8). Нет оснований для специальных детальных комментариев к этим диаграммам, поскольку специалисту в данной области техники они будут легко понятны. Общий КПД фактически имеет значение, превышающее примерно вдвое КПД обычного двигателя при любой скорости. Все составные части, их предназначение и расположение, а также способы регулировки могут изменяться и усовершенствоваться в соответствии с опытом специалиста в данной области техники. Например, вместо того, чтобы удерживаться вилкой 4", магниты 2, показанные на фиг. 1 и 2, могут крепиться на цилиндрическом основании, имеющем единую ось с поршнем и составляющем единое целое с ним, с составными частями, скомпонованными так, как уже описано относительно двигателя Джарретта. Этот вариант на чертежах не показан. Описанные проиллюстрированные конструкции таким образом являются предпочтительными вариантами воплощения изобретения, которые не имеют ограничительного или обязательного характера.

Формула изобретения

1. Линейный электрический генератор (1), в котором генерирование электроэнергии достигается при помощи электромагнитного устройства, содержащего неподвижные обмотки (2) и один или более постоянных магнитов (3), которые перемещаются вместе с возвратно-поступательным движением одного или более поршней (4) двухтактного двигателя внутреннего сгорания, приспособленного к работе также с изменяемыми ходами сжатия, каждый поршень (4) завершает один рабочий ход вследствие сгорания и расширения смеси в цилиндре (5) и один ход сжатия вследствие действия средства (7) для возвращения механической энергии, благодаря чему цилиндры (5) двигателя внутреннего сгорания, спаренные с поршнями (4), имеют, по меньшей мере, одну форкамеру (10) с основой (10"), которая открыта в направлении цилиндров и в которой при любых режимах работы двигателя, по меньшей мере, часть объема воздуха, содержащегося в форкамере, смешивается с, по меньшей мере, количеством топлива, необходимым для химической реакции, отличающийся тем, что сгорание смеси в форкамере (10) производит всю необходимую выходную энергию и вызывает ее распространение в воздухе, содержащемся в цилиндрах, в который не было впрыснуто топливо, и в котором сгорание заканчивается, указанное электромагнитное устройство имеет такую конструкцию, что для заданного соотношения воздух/топливо и с указанной частью объема воздуха, остающейся неизменной, соотношение между двумя количествами суммарной энергии, которая реально используется для производства электроэнергии, когда генератор работает в разных постоянных режимах, соответствующих любым двум разным законченным ходам расширения и сжатия указанных поршней (4), по существу равно соотношению между двумя степенями сжатия, полученными в форкамерах (10) и соответствующих цилиндрах (5) в результате действия вышеупомянутых двух разных ходов указанных поршней (4), умноженному на отношение двух значений общих КПД двигателя внутреннего сгорания, соответствующих указанным степеням сжатия. 2. Линейный генератор электроэнергии по п.1, отличающийся тем, что часть объема воздуха в форкамере (10), которая должна смешиваться с топливом, устанавливается каналами (112), ведущими от цилиндров (5) к закрытому основанию (113) форкамеры. 3. Линейный генератор по любому из предыдущих пунктов, отличающийся тем, что магниты (3) и неподвижные обмотки (2) расположены так, что происходит уменьшение их электромагнитного сцепления при нарастании рабочего хода поршней (4), но увеличивается при нарастании хода сжатия указанных поршней (4). 4. Линейный генератор по любому из предыдущих пунктов, отличающийся тем, что омическая нагрузка с постоянным значением прилагается между концами обмоток (2) и надлежащие количества механической энергии, используемой для производства электроэнергии относительно двух разных завершенных ходов расширения и сжатия указанных поршней (5), автоматически получаются благодаря пригодной конфигурации, компоновке и размерам указанных магнитов (3) и неподвижных обмоток (2). 5. Линейный генератор по п.4, отличающийся тем, что указанные магниты (3) по существу имеют форму параллелепипеда, они и неподвижные обмотки (2) имеют такую компоновку и размеры, что механическая энергия, используемая для производства электроэнергии при их относительном перемещении за один цикл, следует кривой, соответствующей изменению хода сжатия указанного поршня или поршней (4), которую можно считать по существу совпадающей с кривой энергии, производимой за один цикл двигателя внутреннего сгорания в соответствии с этим таким же ходом сжатия за счет изменения толщины магнитов (3), их ширины и/или воздушного промежутка (Т) в направлении движения. 6. Линейный генератор по любому из предыдущих пунктов, отличающийся тем, что, по меньшей мере, одна форкамера (10) имеет по существу коническую конфигурацию с впрыскивающим соплом (14), расположенным в вершине конуса. 7. Линейный генератор по любому из пп.1 - 5, отличающийся тем, что, по меньшей мере, одна форкамера (10) имеет по существу конфигурацию усеченного конуса и ее закрытое основание (113), обращенное в противоположную от цилиндра (9) сторону, соединено с указанным цилиндром (9) при помощи одного или более каналов (112), впрыскивающее сопло (114) расположено на оси указанного закрытого основания и второе впрыскивающее сопло (111) расположено перпендикулярно к оси форкамеры в предопределенном положении. 8. Линейный генератор по любому из предыдущих пунктов, отличающийся тем, что для устранения вибраций и ограничивающих обратных действий имеется одна или более пар поршней (6, 6"), обращенных друг к другу. 9. Линейный генератор по п.8, отличающийся тем, что количество поршней (6, 6") целиком кратно двум и они соединены воедино попарно друг с другом при помощи соединительных средств 8, 8" (фиг.3), причем эти поршни (6, 6") работают в одном направлении в каждый момент цикла. 10. Линейный генератор по п.8 или 9, отличающийся тем, что два цилиндра, находящиеся друг против друга (6, 6"), имеют общую камеру сгорания (9), в которую ведет, по меньшей мере, одна форкамера (10), с продольной осью (h), перпендикулярной продольной оси (К) двух цилиндров (6, 6"). 11. Линейный генератор по п.10, отличающийся тем, что применяются две форкамеры (110) для каждой пары обращенных друг к другу цилиндров (6, 6"), расположенных диаметрально противоположно и обращенных друг к другу. 12. Линейный генератор по одному из пп.8 - 11, отличающийся тем, что положение, по меньшей мере, части указанных компонентов (7), предназначенных для возвращения механической энергии, может регулироваться в направлении оси движения поршней, спаренных с этими компонентами. 13. Линейный генератор по п.12, отличающийся тем, что может регулироваться только положение компонентов для возвращения энергии, спаренных с половиной поршней (6, 6" фиг.2), которые движутся в заданном направлении в заданный момент цикла. 14. Линейный генератор по любому из предыдущих пунктов, отличающийся тем, что часть (11), которая выполняет роль основания и местоположения вышеупомянутых возвратных механизмов (7), соединена с землей или с поддерживающим генератор (1) элементом при помощи соединений (12), имеющих предопределенную эластичность в направлении движения поршней (6, 6" фиг.2). 15. Линейный генератор по любому из предыдущих пунктов, отличающийся тем, что воздух для удаления выхлопных газов и заполнения цилиндров (5) подается форкамерой(ами) (10) при помощи одного или более вспомогательных выхлопных поршней (19), представляющих собой единое целое с поршнями (4) двигателя внутреннего сгорания, эти вспомогательные поршни (19) всасывают воздух в фазе сжатия поршней (4) при помощи первичных односторонних клапанов (21), закрепленных во взаимодействующих вспомогательных цилиндрах, и нагнетают его в указанные форкамеры (10) при помощи вторичных односторонних клапанов (22), расположенных вблизи указанных форкамер (10) в ходе фазы расширения этих поршней (4). 16. Линейный генератор по любому из предыдущих пунктов, отличающийся тем, что в любом рабочем режиме, по меньшей мере, часть воздуха, содержащегося в форкамере/камерах (10) двигателя внутреннего сгорания, смешивается с количеством топлива, эквивалентным 120% количества топлива, необходимого для химической реакции. Приоритет по пунктам:
09.06.94 по пп.1, 3, 6, 8, 9, 10, 12 - 14;
04.11.94 по пп.4, 5, 11, 15, 16;
07.02.95 по пп.2 и 7.


Если мы снабдим ноутбук тюнером, у нас будет радиоприемник, телевизор, интернет и прочие прибамбасы для развлечения и работы. Добавим пару светодиодных лампочек, и мы уже почти полностью независимы от чубайсиков. При низком энергопотреблении ноутбуков, 7 амперного аккумулятора хватит на 8-12 часов работы. Если снабдить аккумулятор зарядкой на линейном генераторе, который будет подзаряжать его непрерывно – проблема будет решена.

Предлагаю для энтузиастов более простую и дешевую модель, которая уже «обкатана» и работает. Собрать эту модель может любой желающий поэкспериментировать в этой области, специальных знаний не требуется, но конечно желательно.

Я имею в виду «линейный генератор». Многие видели фонарики, изготовленные на линейном генераторе. Стоит их немного потрусить и энергии хватает на несколько минут горения светодиода. http://mobipower.ru/modules.php?name=News&file=article&sid=55 пройдя по этой ссылке можно ознакомиться с линейным генератором сделанным любителями, для зарядки аккумулятора. Этот линейный генератор собранный на небольших магнитах уже обладает достаточной мощностью для зарядки аккумулятора.

Конечно, линейный генератор собранный любителями, требует усовершенствования – не трусить же вам его сутки напролет руками. Я приобрел поисковой магнит P-60-06-30-N, от всех других поисковых магнитов он отличается тем, что не имеет стального стакана и одинаково сильно работает, как на плоскостях, так и по окружности. Это довольно сильный магнит, с силой сцепления 124 кг, линейный генератор на нём должен получиться мощным.

В центре этого магнита имеется отверстие, что облегчает его применение. Представьте шпильку, в центре которой с помощью шайб и гаек закреплен этот магнит. Шпилька, через «П» образную пластину, закрепленную на концах шпильки, горизонтально подвешена на неподвижной опоре. Это позволяет ей, вместе с магнитом, горизонтально перемещаться, внутри жестко закрепленной катушки. Подвеска жесткая, поэтому магнит может перемещаться только вдоль катушки. Если мы возьмемся за конец шпильки рукой и начнем её двигать в катушке, она начнет вырабатывать ток – вот и получился генератор, осталось только его автоматизировать.

Это можно сделать с помощью электромагнита и датчика Холла. На одном конце шпильки закрепляем дисковый магнит, напротив него закрепляется электромагнит, с сердечником равным по диаметру магниту. Электромагнит подключен через исполнительный механизм, управляемый датчиком холла, к аккумулятору.

При движении шпильки в сторону электромагнита, постоянный магнит, закрепленный на конце шпильки, притягивается к сердечнику электромагнита. Но на минимальном расстоянии до электромагнита срабатывает датчик Холла, включается электромагнит, одноименным полем с постоянным магнитом, и в результате сильным толчком отбрасывает шпильку с магнитом в противоположный конец.

На другом конце, напротив шпильки можно неподвижно закрепить пружину, которая будет отбрасывать шпильку в обратную сторону. Таким образом, процесс будет длиться непрерывно. Вместо пружины можно закрепить неподвижно дисковый постоянный магнит, а на шпильке такой же дисковый магнит, одноименными полюсами друг к другу.

Если вы пробовали соединить, одноименными полюсами, два неодимовых магнита, даже не очень больших, вы представляете, как это трудно. Причем магниты, при соединении, стремятся уйти в сторону, поэтому возможно потребуется вместо одного магнита, установить 4, с небольшим наклоном, чтобы они уравновешивали друг друга. В этом случае шпилька будет получать толчок строго горизонтально, что и требуется. Таким образом, на шпильке будет один магнит, а неподвижно будут закреплены 4, может быть будет достаточно и 3, симметрично расположенных.

Когда вы соберете подобное устройство, катушку электромагнита необходимо будет настроить в резонанс, для минимального потребления тока. Для этого в разрыв катушки необходимо включить амперметр, а к самой катушке параллельно подсоединять неполярные конденсаторы, добиваясь наименьшего потребления тока электромагнитом. При входе в резонанс электромагнит будет потреблять минимальный ток, вся остальная мощность генератора будет расходоваться на подзарядку аккумулятора.

Обмотку генератора можно намотать, исходя из опыта любителей, получится две катушки в поперечном сечении 30х20 каждая. Провод толщиной 1,5-2 мм с таким расчетом, чтобы он выдавал около 20 вольт, с возможно большим током.

Удлинив шпильку её подвес можно сделать на магнитах, тогда верхний маятниковый подвес можно исключить. Еще больше удлинив шпильку можно расположить на ней два, три таких генератора, увеличив общую мощность. В общем, здесь есть над чем поэкспериментировать любителю.

Вот к каким выводам приходили любители, проводя эксперименты с катушками:

«Рассмотрите этот процесс подробнее. Если магнит не находится в катушке и начинает входить в неё одним полюсом, то до того момента, пока катушка не дойдет до середины магнита в катушке будет наведён импульс только одной полярности. А вот когда в катушку начинает входить другой полюс, вот тогда появляется импульс другой полярности. Только вначале он маленький (т.к. магнитное поле в середине магнита незначительно), но по мере продвижения магнита вглубь катушки противоимпульс становится всё больше и больше и наступает момент когда эти импульсы равны. Это и есть момент перехода напряжения через 0. Это как раз и есть тот момент, когда магнит находится полностью в катушке и расстояние от его торцов (полюсов) до края катушки равны. А соответственно равны и наведённые напряжения разноименными полюсами. При выходе одного из полюсов из катушки картина аналогичная».

«Как и ожидал — торцы магнита формируют разнополярную ЭДС. А катушка, находящаяся у «бока» магнита — мало что дает. Основной импульс формируется, когда напротив витков проходит торец магнита. А у боков МП уже значительно рассеяно.

Отсюда выводы:

1) Надо 2 катушки, разнонаправленные и коммутированные так, что бы ЭДС суммировались.

2) амплитуда колебаний магнита не должна быть больше, чем длина катушек, что бы торцы магнита не выходили за пределы «своей» катушки.

С магнитной подвеской такой генератор генерит практически синусоиду! В других случаях генерация тоже есть, но это всякие разные импульсы, разные как по амплитуде, так и по полярности».

Линейный генератор вертикального типа

В этом генераторе катушка будет такая же, как и в прошлом генераторе, только расположена она будет вертикально. Магнит, соответственно, будет совершать возвратно поступательные движения, внутри катушки, в вертикальной плоскости. Катушка 2 каркасная, с внутренним диаметром 62 мм, длинна 60 мм. Магнит толщиной 30 мм, будет перемещаться на 30 мм.

Внизу катушки будет неподвижно закреплен постоянный магнит, направленный одноименным полюсом к подвижному магниту. Он будет служить пружиной, отталкивающей подвижный магнит.

Сверху катушки будет закреплен металлический сердечник электромагнита. Сердечник должен быть такого размера, чтобы подвижный магнит реагировал (притягивался) на него с нижней точки. На металлический сердечник можно наклеить резину или кожу, поможет при настройке. Как и в предыдущем генераторе, управлять электромагнитом будет датчик Холла.

При окончательной сборки этого генератора, подвижный магнит будет притянут к сердечнику электромагнита. При подключении аккумулятора, сработает датчик Холла и электромагнит с силой отбросит постоянный магнит. Достигнув нижней точки, магнит получит толчок от постоянного магнита, закрепленного внизу, и начнет притягиваться сердечником электромагнита. Достигнув верхней точки, ещё до соприкосновения с сердечником электромагнита, сработает датчик Холла, включится электромагнит и последует очередной толчок.

При сравнительной простоте конструкции, не всё так просто, как выглядит. Подвижный магнит имеет массу 620 гр., это довольно большой вес. Поэтому электромагнит должен быть достаточно мощным, чтобы погасить инерцию этой массы, при движении вверх. При движении магнита к верхней точке, электромагнит должен включиться ещё на подходе магнита, к верхней точке, чтобы погасить инерцию, остановить, а потом отбросить магнит вниз. Отключиться электромагнит может только после прохождения постоянным магнитом ¾ пути вниз. Таким образом, период включения электромагнита будет достаточно продолжительный, а значит – он будет потреблять много энергии. Останется ли энергии для полезной работы?

Генератор маятник вертикальный

Компенсировать расход энергии электромагнита можно разными способами. Один из них подвесить магнит на пружину, которую подобрать такой жесткости, чтобы магнит качался в пределах 30 мм. Электромагнит можно разместить снизу, сердечник электромагнита, может быть не таким массивным. В этом случае будет достаточно одного короткого импульса, чтобы придать магниту дополнительное ускорение, для непрерывного качания.

Компенсировать силу инерции, можно и в предыдущей схеме описания генератора. Для этого на подвижный магнит можно поставить снизу дополнительную ось, на которой расположить дополнительный магнит компенсатор. Нижний отталкивающий магнит в этом случае должен иметь форму кольца, для свободного прохождения оси.

При движении постоянного магнита, в катушке будет наводиться ЭДС, и появляться свое магнитное поле, которое будет противодействовать движению магнита. Чем большую мощность мы будем снимать с катушки, тем сильней она будет тормозить движение магнита. Можно ли компенсировать эту силу?

В генераторах на постоянных магнитах эту силу компенсируют разными способами. Самый эффективный – это способ, применяемый в генераторах бесщелевого типа, как известно у них нулевое сопротивление вращению. Возможно, этот способ удастся применить и в линейных генераторах.

Тогда идеальный генератор будет выглядеть, как набор из колец. Катушки, которых может быть больше чем магнитов, могут быть расположены как снаружи, так и внутри колец. Идеальная конструкция будет в виде маятника, с двумя линейными генераторами на концах.

Линейный генератор вертикального типа можно собирать на любых дисковых неодимовых магнитах. Чем больше размер, тем большую мощность можно получить. Отверстие в центре магнита не обязательно.

Если кто-нибудь добьется заметных успехов в сборке линейного генератора, напишите о результатах – размещу на этой странице, другим будет легче идти проторенным путем. Сам успел приобрести магнит, шпильку и примерно в это же время успел потерять работу. Поэтому не до экспериментов – тут бы выжить, работу найти перед пенсией сложно.

Для некоторых ситуаций предлагается использовать эффективные, с точки зрения автора, способы преобразования поступательных движений во вращательные – с целью применения вместе с обычными динамо-машинами.

Соленоид с магнитом

Первые линейные преобразователи энергии были созданы еще в начале девятнадцатого века (в работах Фарадея и Ленца) и представляли собой соленоиды с движущимися внутри них постоянными магнитами. Но использовались эти устройства только в физических лабораториях для формулирования законов электромагнетизма.

Впоследствии серьезное применение получили лишь генераторы, работающие от вращательных движений. Но теперь человечество «вспоминает давно забытое старое». Так, недавно были созданы «вечные» или «индукционные фонарики Фарадея», работающие от встряски и имеющие в своей основе «поступательный генератор» – это тот же соленоид, с колеблющимся внутри него постоянным магнитом, плюс – выпрямительная система, сглаживающий элемент и накопитель. (Необходимо отметить, что для появления тока в соленоиде необязательно вдвигать и выдвигать внутрь него магнит – достаточно, и не менее эффективно, приближать и удалять магнит от электрической катушки, если в нее вставить сердечник, лучше ферритовый).

В интернете можно найти описание того, как сделать генератор, питающий велосипедные фары, работающий на том же принципе – от движения магнита внутри соленоида (встряску здесь уже обеспечивает не человеческая рука, а само транспортное средство – велосипед).

Появились и проектируются поступательные генераторы, использующие «пьезоэлектрический эффект» – способность некоторых кристаллов при деформации продуцировать электрические заряды.

Это, например, всем известные пьезоэлектрические зажигалки. Французские ученые (в частности этим занимается Жан Жак Шелло в Гренобле) решили подставить пьезокристаллические модули под дождевые капли и таким образом получать электроэнергию. В Израиле фирмой «Innowatech» разрабатывается способ получения электроэнергии от давления машин на дорожное полотно – пьезокристаллы будут подложены под шоссе. А в Голландии подобным же образом планируют «собирать» электроэнергию из-под пола танцевального зала.

Все вышеперечисленные примеры, кроме использования энергии дождя, касаются «снятия» энергии с результатов деятельности человека. Здесь можно предложить еще размещение поступательных генераторов в амортизаторах автомобилей и поездов, а также снабжение этих транспортных средств увеличенными копиями вышеописанных генераторов велосипедов, работающих от встряски, и, кроме того, расположение поступательных генераторов под рельсами железных дорог.

Новый способ использования ветра

Рассмотрим теперь, как полнее использовать энергию ветра. Известны ветроэлектрогенераторы, в которых ветер вращает воздушные винты, а они, в свою очередь, – валы динамо-машин. Но не всегда воздушные винты удобны в использовании. Если они применяются в жилых районах, то требуют дополнительного места, и их, для безопасности, надо заключать в сетки. Они могут портить внешний вид, заслонять солнце и ухудшать обзор. Вращающиеся генераторы сложны в изготовлении: требуются хорошие подшипники и балансировка вращающихся частей. А размещенные на припаркованных электромобилях ветроэлектрогенераторы могут быть похищены или повреждены.

Автор предлагает использовать более удобные рабочие тела, на которые будет воздействовать ветер: щиты, пластины, паруса, надувные формы. А вместо привычных динамо-машин – специальные крепления в виде поступательных генераторов, в которых от механических перемещений и давлений, производимых рабочими телами, будет вырабатываться электроэнергия. В таких креплениях могут быть использованы как пьезокристаллы, так и соленоиды с подвижными магнитными сердечниками. Токи, созданные этими креплениями, будут проходить через выпрямители, сглаживающие элементы и заряжать аккумуляторы для дальнейшего использования выработанной электроэнергии. Все части таких поступательных генераторов просты в изготовлении.

Щиты с подобными креплениями, размещенные на стенах зданий, балконов и т. п., будут приносить вместо неудобств только выгоду: звуко- и теплоизоляцию, тень. Они практически не требуют дополнительного пространства. Рекламные щиты, навесы от солнца или дождя, снабженные такими креплениями и «дождевыми» пьезокристаллическими модулями, будут кроме своей основной функции еще и вырабатывать электроэнергию. По такому же принципу можно заставить работать и любой забор.

Энергопроизводящие окна и столбы

Есть возможность использовать прочные стекла в окнах в качестве «ветрозаборников», а электровырабатывающие крепления расположить в раме.

Если взять случай с электромобилями, то крепления можно переключать: на стоянке, где позволительна вибрация стекол от ветра, будут использоваться электрогенерирующие крепления, а при движении, чтобы не нарушать аэродинамические свойства электромобиля – обычные. Хотя при использовании пьезокристаллов можно добиться совсем небольшого люфта и переключения не потребуются.

В более простом (непрозрачном варианте выполнения щитов) на стоянке обычные стекла опускаются и вместо них вставляются щитовые ветроэлектрогенераторы, креплениями опирающиеся на рамы окон. То же можно сделать и в доме ночью, когда окна не должны пропускать свет: вместо стекол или внешних ставень устанавливать подобные ветроэлектрогенераторы.

Опора в виде треноги для фонарного столба или сотовой антенны будет вырабатывать электроэнергию, если мы в каждой «ноге», разделив их поперек на две части, в стыке разместим вышеописанное электрогенерирующее крепление. Столб фонаря или антенны можно поместить в зарытый в землю и укрепленный полый цилиндр с подобными электрогенераторами, размещенными по внешнему ободу, – это еще один вариант.

Фонари на столбах, оснащенных такой «поддержкой», могут работать самостоятельно, без подвода к ним кабелей электропитания – ведь их раскачивание от ветра или от колебаний дорожного полотна всегда имеет место. Такие фонари должны быть очень востребованы там, где либо нет электростанций, либо местность еще не «охвачена» проводкой.

Кроме того, поступательные генераторы позволяют нам задействовать еще и такие «природные ветрозаборники», как деревья: ведь их ветви раскачиваются от ветра. С деревьями лучше использовать генераторы соленоидного типа, а не на пьезокристаллах. Соленоиды с магнитами и пружинами будут обеспечивать мягкую «упряжку».

Вот один из возможных вариантов использования качания ветки. Одну веревку, идущую от бобины электрической катушки, закрепляем на стволе или прикрепляем к «якорю» (типа морского), зарытому в землю, а вторую, соединенную с магнитом, закрепляем за качающуюся ветвь. Закрепление бобины можно и не производить – оставить только связь с веткой. Тогда генератор будет работать от встряски, которую ему обеспечит раскачивание ветки от ветра (катушке не даст упасть пружина).

«Летящее» электричество

Что же касается надувных «рабочих тел» для поступательных ветроэлектрогенераторов, то многие видели рекламные надувные фигуры на бензоколонках, которые качаются от ветра.

Такие надувные формы (их можно выполнять в виде шаров, эллипсоидов, надувных матрацев и т.д.) также могут поработать на экологически чистую электроэнергию. Их преимущество в том, что они, «отвязавшись» и движимые ветром, никого из людей серьезно не травмируют.

Так, например, можно использовать воздушный шар как рабочее тело для поступательного ветроэлектрогенератора соленоидного типа. Магнит привязывается к шару, а катушка «якорится», причем лучше использовать упругие соединения, чтобы не порвать шар и не повредить катушку и электронику (упомянутые выше выпрямительную, сглаживающую и накопительную системы).

Энергию ветра можно задействовать для выработки электричества еще и на парусных судах в местах крепления парусов (тут больше подойдут электрогенерирующие крепления на пьезокристаллах, чтобы не создавать больших перемещений). Выработанное электричество пойдет на зарядку аккумулятора как дополнительной энергетической возможности в случае штиля, для движения на электромоторе и для внутренних нужд судна, скажем, для освещения и холодильных агрегатов.

Энергия волн

Теперь посмотрим, как использовать энергию морских и речных волн. Можно сделать такие генераторы поступательного действия, где рабочими телами будут служить не большие щиты или другие крупные геометрические формы, а небольшие пластины.

Электрогенерирующие крепления останутся такими же (на соленоидах или же на пьезокристаллах), но только меньших размеров. Наборы из таких пластинчатых электрогенераторов установим на плавучих средствах на уровне их ватерлиний. Они (генераторы), в силу их небольших размеров, не будут слишком сильно портить обвод судна. Следует позаботиться и о гидроизоляции генераторов, поместив их под водонепроницаемую эластичную оболочку. Волны, бьющие по судну (по пластинам), будут вырабатывать электроэнергию для двигателя (ходовая часть) и для внутренних нужд судна, что позволит избавиться от громоздкого и опасного (переворачивающего плавучее средство) паруса, с которым, кроме того, сложно идти против ветра, и загрязняющих окружающую среду моторов и генераторов внутреннего сгорания.

Использовать энергию волн у берега – еще проще, закрепив соленоиды к пирсу, дебаркадеру или другому сооружению. Здесь возьмем щиты и крепления побольше: в этом случае обтекаемость только повредит.

Генератор в виде плота

Для этой же цели (использования энергии волн) предназначен «плот-электрогенератор». Здесь волны будут обеспечивать движение поплавков друг относительно друга, что при помощи стоек на шарнирах вызовет движение магнитов относительно соленоидов.

Напомним, что магниты, соленоиды и пружины составляют поступательные генераторы, прикрепленные к стойкам на шарнирах. Аккумулятор и электронный блок заключены в общий жесткий кожух, подвешенный на канатах к стойкам.

Система стоек, шарниров и пружин, не ограничивая полностью взаимные перемещения поплавков, в то же время не даст плоту распасться. А относительное движение магнитов и соленоидов обеспечит выработку тока в соленоидных обмотках, который будет передаваться по проводам в электронный блок. Там он пройдет выпрямитель и сглаживающий элемент, после чего поступит в аккумулятор плота или по кабелям будет передаваться на берег или на судно, буксирующее плот для своих энергетических нужд.

Для более полного использования всех направлений воздействия волн можно из таких плотов составить конгломерат, разместив их под оптимальным углом друг относительно друга, или же на одном плоту сделать комплексную (учитывающую все возможные относительные перемещения поплавков), более сложную систему стоек шарниров и пружин.

Использование перепадов уровней воды

Поступательные генераторы подходят также и для использования энергии перепадов уровней воды у рек, водопадов, приливов и отливов. Они будут работать вместо гидротурбин. Эффективность их, по предварительным оценкам, меньше, но зато поступательные генераторы вместе с сопутствующими устройствами здесь проще построить: ведь гидротурбинные генераторы, в силу их принадлежности к вращающимся, нуждаются в точности изготовления, балансировке и хороших подшипниках.

Самой простой для выполнения является следующая схема. Соленоид закрепляется на берегу (очень хорошо к мосту) речки или водопада, а к магниту привязывается поплавок, опущенный в воду. Если течение турбулентное, а это мы наблюдаем в быстрых речках и водопадах, то поплавок будет колебаться и передаст колебания магниту, что и требуется для выработки электроэнергии. Магнит вместе с поплавком не уплывет из‑за того, что магнит закреплен к днищу бобины соленоида пружиной. Эта схема очень напоминает вышеприведенную поплавковую схему для использования энергии волн.

Есть еще одна достаточно хорошо известная система. Сверху в накопительную чашу идет непрерывный поток воды, например из отводного канала от речки. Чаша заполняется. Когда гидростатическое давление на конец трубки, находящейся в этой емкости, превысит определенный «порог запирания» (ведь в трубке пока воздух), вода начнет через нее проходить и выльется на поступательный генератор, находящийся внизу. Уровень воды в чаше спустится ниже изогнутого конца трубки, и воздух опять «запрет» ее.

За счет поступления воды сверху снова произойдет заполнение емкости до максимального уровня. А при нем гидростатическое давление способно «отпереть» трубку (и т. д.). Тем самым обеспечивается прерывистое падение воды на поступательный генератор, что и требуется для выработки электроэнергии. После совершения «работы» вода стечет вниз на водосборник, откуда по соответствующему каналу поступит опять в речку, но уже на более низком уровне.

Поступательные генераторы, предназначенные для использования прерывистых падений на них жидкости, выглядят так. Соленоидного типа – здесь наклонная кювета для сбора и слива воды жестко крепится к магниту, находящемуся внутри закрепленного соленоида. А сам магнит снизу подпирает пружина, закрепленная к днищу бобины соленоида. Пьезоэлектрического типа – здесь такая же кювета опирается на пьезокристалл.

Есть устройство такого же предназначения, но другого типа – это поворачивающаяся (в вертикальной плоскости) на шарнире чаша. Она имеет разные центры тяжести в ненаполненном и наполненном состояниях. В ненаполненном состоянии чаша находится в устойчивом равновесии: она опирается на шарнир и подставку. Вертикаль, опущенная из ее центра тяжести, проходит через площадь опоры. Но по мере заполнения чаши водой, например из отводного канала от речки, ее центр тяжести смещается. И когда вертикаль, опущенная из нового центра тяжести выйдет за площадь опоры, чаша начнет переворачиваться.

По мере переворачивания вертикаль из центра тяжести все больше и больше будет выходить за площадь опоры. В конце концов жидкость из чаши выльется на поступательный генератор, а затем в водосборник и в возвращающий к речке канал. Пустая же чаша возвратится в свое исходное положение устойчивого равновесия, снова начнет заполняться водой, и цикл повторится.

Совершенствование конструкций

Можно придумать еще много возможностей для использования электрогенераторов поступательного действия, вариантов их конструктивного выполнения и сопутствующих им устройств. Автор надеется, что эти генераторы займут свою «нишу» в области выработки экологически чистой электроэнергии.

Если по каким‑то причинам электрогенераторы поступательного действия не могут быть построены и применены или уже имеются обычные генераторы, действующие от вращательных движений, то некоторые поступательные движения, имеющие достаточную амплитуду (например, качания веток деревьев от ветра, движения поплавка или воздушного шара), все равно могут быть использованы, так как существуют механические передачи, преобразующие поступательные движения во вращательные.

Можно назвать, например, реечную передачу, винтовую (как у детской игрушки – юлы) и ременную с катушкой: на катушку наматываем ремешок, леску или кабель и присоединяем к ней возвратную пружину, например спиральную. А для еще большей эффективности выработки электроэнергии таким способом надо в качестве мультипликатора поставить коробку передач, как в автомобиле или велосипеде, и переключать скорости (передаточное число) в зависимости от силы ветра или волн на текущий день или час.

Если мы оценим, какая часть «приземной» воздушной поверхности, подверженной воздействию ветров, еще не «задействована» для выработки электричества, какая водная поверхность с волнами и сколько рек и водопадов пока не «работают» (это еще не говоря о солнечных лучах и геотермальных источниках), то мы увидим, что у экологически чистой энергетики есть большое будущее.

Несмотря ни на что работа мысли продолжается. Так было и так всегда будет. Человек являет миру все новые, и новые изобретения. Вот и сегодня вниманию читателей мы представляем линейный генератор Олега Гунякова. Имеет ли эта разработка право на жизнь? Свой ответ на этот вопрос дает Владимир Гуревич. Отдать предпочтение одному из авторов можете и вы, приняв участие в . Комментарии и обсуждения на .

Олег Гуняков: линейный генератор

Исторически сложилось, что традиционные устройства для выработки электрической энергии используют вращательное движение для перемещения обмоток в магнитном поле. В движения такие устройства приводятся различными движителями: гидротурбинами, газовыми турбинами, ветром и т.д. Одним из движителей является и традиционный двигатель внутреннего сгорания. В таких движителях химическая энергия топлива проходит многократные преобразования: сначала в поступательное движение поршней, а затем - во вращательное движение коленвала. Необходимость такого преобразования приводит, как к механическим потерям, так и к усложнению конструкции движителя в целом. Мы все на опытах физики видели одну и туже картину: преподаватель берет постоянный магнит, и начинает возвратно-поступательно его двигать в катушке индуктивности. При этом на клеммах катушки появляется напряжение. В этой статье я рассмотрел возможность использования возвратно-поступательного движения для выработки электрического тока без промежуточных преобразований во вращательное движение. Такие механизмы получили название ЛИНЕЙНЫХ ГЕНЕРАТОРОВ.

Предлагаемый тип линейного генератора рассчитан для использование в промышленных целях, в первую очередь на судах.

Краткое описание

В данном линейном генераторе (далее ЛГ) вместо крышек цилиндра устанавливаются два внешних поршня, которые жестко между собой закреплены. Такое технологическое решение обусловлено следующим: в традиционных цилиндрах при взрыве топлива поршень начинает двигаться в одну сторону, но по законам инерции сам цилиндр ведь тоже начинает двигаться в противоположную. И если такой генератор заставить вырабатывать большие мощности, то силы продольного смещения будут вызывать огромную вибрацию и повреждение фундаментных болтов. Для компенсации возникающих усилий и устанавливаются дополнительные внешние поршни. При условии что масса внутренних поршней и масса внешних поршней одинаковы, то и возникающие силы инерции тоже будут одинаковы. Такие силы будут взаимно гаситься, и на корпус передаваться не будут. Катушки, с которых будет сниматься напряжение крепятся к неподвижному корпусу. А в качестве индуктора будет использоваться набор постоянных магнатов трапециевидной формы.

Синхронизация движения поршней будет обеспечиваться за счет сопротивления движению постоянных магнитов при выработке электрической энергии. При условии, что обмотки электрической части имеют одинаковое сопротивление, сопротивление движению постоянных магнитов также одинаково. Но для увеличения надежности и предотвращения аварий в ЛГ устанавливают механический синхронизатор, представляющий собой две зубчатые рейки, двигающиеся относительно друг друга, и зубчатого колеса, закрепленного на неподвижной оси и вращающегося лишь от движения реек.

Более подробное описание конструкции смотрите ниже.

Работа генератора

После разгона поршней до пусковой частоты, в первый цилиндр подается топливо, происходит сгорание и начинается расширение образовавшихся газов. Во вторм цилиндре в этот момент идет сжатие воздуха.

При достижении внешнего поршня в первом цилиндре выпускных клапанов начинается выпуск отработавших газов.

При достижении внутреннего поршня в первом цилиндре продувочных окон начинается процесс продувки. В данном ЛГ продувка прямоточная, что обеспечивает наименьший коэффициент остаточных газов. Это, в свою очередь, увеличивает массовый заряд воздуха в цилиндре, что приводит к полному сгорания топлива и т.д. В этот момент поршни достигают своих крайних положений.

Расширение газов во втором цилиндре приводят в движение поршни первого цилиндра. Внутренний поршень достигает продувочных окон и перекрывает их, в то время, как выхлопные окна все еще открыты. Это приводит к потере массового заряда воздуха в цилиндре, но данной потерей можно пренебречь из-за низкого коэффициента остаточных газов в цилиндре. Внешний поршень достигает выхлопных окон, перекрывает их, и тем самым обеспечивает процесс сжатия в первом цилиндре, в то время, как во втором идет расширение. И цикл повторяется.

Технологический разрез линейного генератора

Корпус двигателя 1 - сварной стальной, цилиндрической формы, имеет внутри опоры 2, 3 и 4 для установки втулки рабочего цилиндра 5. Втулка крепится нажимным кольцом 6 на 8-ми шпильках. Шпильки крепятся в толстостенной фундаментной плите 7. Далее на втулку одевается цилиндрический водяной коллектор 8. После коллектора на втулку цилиндра одевается газовыхлопной коллектор-улитка 9.

Проточка втулки и улитки на посадочных поверхностях устроены таким образом, что между ступеньками зажимается теплостойкая асбестовая прографиченная прокладка. Улитка при работе нагревается и может расширяться в линейном направлении. Для возможности расширения улитка крепится на длинных шпильках 10, проходящих через трубки 11, гайками 12, которые создают нажимной усилия на улитку через пружины 13. После улитку на втулку одевается водяной коллектор 14.

Втулка рабочего цилиндра 5 цельная. Центральная часть втулки имеет утолщение так же, как и в месте крепления втулки - гребень 15. В центральной части втулка имеет отверстия для 2-х насос-форсунок 16. Так же втулка имеет с каждой стороны от центра по 6 отверстий для штуцеров лубрикаторной смазки (на чертеже не показана). Во втулке в центральной части внешне сделана цилиндрическая проточка для отвода и сбора охлаждающей воды с тангециальних сверлений охлаждающих каналов 17. На втулке есть 17-ть канавок для резиновых уплотнительных колец системы охлаждения. Во втулке со стороны выхлопа и со стороны продувки является тангенциальные расположены окна.

Линейный генератор имеет силовой сварной корпус 18 и легкий корпус для обеспечения безопасности обслуживающего персонала. Легкий корпус закрывается с торцов двигателя крышками 18 на фланцах.

Поршневая группа каждого линейного генератора состоит из 2-х поршней 20. Внутренний поршень крепится к корпусу индуктора 21 на 8-ми шпильках 22. Внешний поршень крепится к траверс-диска 23 на 8-ми шпильках 24. Траверса-диск цилиндрической формы подкреплен в радиальном направлении треугольными косынками 25 с двух сторон, которые крепятся сваркой. Каждый поршень имеет по 6 колец: 4 компрессионных и 2 маслосъемных. Во избежание ударов поршней друг о друге при высоких степенях сжатия в линейном генераторе, днища поршней имеют плоскую конфигурацию.

Поршни имеют водяное охлаждение. Вода во внешние поршни подается по внутренней телескопической неподвижной трубке 26 с соплом на конце. Охлаждающая вода возвращается по телескопической средней трубке 27. Трубка 27 движется в неподвижной трубке 28. Между трубками 27 и 28 находятся уплотнения 29.

Внутренний поршень также охлаждается водой. Вода подводится по телескопической трубке 30, которая крепится к корпусу индуктора 21 с помощью фланца. В индукторе и в опорном фланце поршня есть канал. Далее вода движется по трубке 31 и охлаждает поршень. Возвращается вода по трубке 32, по аналогичному пути и по телескопии 33 отводится уже подогретая.

Внешние поршни связаны между собой посредством траверза-диска 23, 6-ти штанг 34 и корпуса индуктора 35. На концах штанги имеют резьбу и крепятся за счет гаек, зажимаемых гидродомкратом. Движение внутренних и внешних поршневых групп сдвинуты на 180 градусов. Синхронизм обеспечивается за счет механизма синхронизатора - 3-х шестерен 36 6-ти зубчатых реек.

Три рейки 37, относящиеся к внутренней группе, имеют в части, ближней к корпусу индуктора 21 цилиндрическое сечение и проходят через сальники 38. Далее сечение рейки переходит в квадратное. Рейки, относящихся к внешней группе, - это 3 из 6-ти штанг 34, на которые с помощью болтов прикреплены зубчатые рейки. Все 3 механизма синхронизаторов расположены в отдельных выгородках и имеют в своем объеме масло для смазки механизма.

Сравнение ЛГ и традиционного дизеля.

  • В ЛГ производство и сборка двигателя существенно упрощается из-за отсутствия таких дорогих и сложных в производстве деталей как распределительный вал и коленчатый вал.
  • Уменьшение расхода топлива за счет увеличения механического КПД из-за отсутствия коленвала и распредвала.
  • Уменьшение вибрации из-за взаимного гашения возникающих инерционных сил.
  • Повышенная надежность ЛГ за счет уменьшения количества движущихся деталей.
  • В ЛГ невозможно обеспечить ровную синусоиду генерируемого тока из-за неравномерности скорости перемещения магнитов относительно катушек. Но при современном уровне развития преобразовательной техники эта проблема не является неразрешимой.
  • Повышенная неустойчивость работы ЛГ из-за наличия всего двух цилиндров и отсутствия маховика. При пропуске вспышки в одном из цилиндров ЛГ остановится, так как во втором цилиндре не произойдет сжатия воздуха достаточного для воспламенения топлива. Поэтому для решения этой проблемы возникает необходимость в установке как минимум двух форсунок на один цилиндр.

Олег Гуняков

Отзыв на статью О. Гунякова

Начать придется издалека, а именно со статьи «Линейный бензогенератор (дизель-генератор)» автора Скоромца Ю. Г., опубликованной в журнале , а также, параллельно, на многих Интернет сайтах. В этой статье описан принцип построения силовой установки относительно небольшой мощности, предназначенной для выработки электроэнергии, отличающийся тем, что в нем двигатель внутреннего сгорания объединен с электрогенератором, при этом вращательное движение ротора генератора заменено возвратно-поступательным движением магнитопровода с заложенной в него обмоткой возбуждения. Основной целью такой замены, по мнению автора, является устранение из системы кривошипно-шатунного механизма, включая коленвал, преобразующего возвратно-поступательное движение поршней двигателя внутреннего сгорания во вращательное движение ротора генератора в обычном дизель-электрическом агрегате. Идея, на первый взгляд, неплохая, хотя ее изложение вызывает массу недоуменных вопросов. Не будем комментировать некоторые высказывания автора этой статьи, а лишь процитируем, чтобы читатель мог сам оценить его вопиющий дилетантизм в области электротехники:

  • В генераторе средней и высокой мощности синхронизация движения шатунов достигается путем уменьшения тока возбуждения отстающего шатуна.
  • Регулирование выходного напряжения осуществляется путем изменения частоты работы генератора.
  • Запуск осуществляется тремя короткими мощными импульсами тока, при этом генератор работает в режиме двигателя. Импульсы тока получаем с клемм конденсатора, предварительно зарядив его за некоторое время, через повышающий трансформатор (50-100 кГц) от маломощного источника питания.
  • Ток нагрузки генератора не влияет на магнитное поле генератора, а значит и на характеристики генератора.
  • Что касается самого генератора, то магнитное поле предложенного генератора, в основной части, всегда постоянно, это дает возможность изготавливать магнитопровод не с отдельных пластин (для уменьшения вихревых токов), а с цельного куска материала, что значительно увеличит прочность магнитопровода и уменьшит трудоемкость изготовления.

А теперь относительно самой идеи. Как следует из написанного автором, целью его проекта является устранение из системы двигатель-генератор кривошипно-шатунного механизма, преобразующего один вид движения (возвратно-поступательный) в другой (вращательный). Однако, с точки зрения поставленной задачи эта проблема уже давным-давно решена. В широко известном роторно-поршневом двигателе Ванкеля вращательное движение выходного вала получается без всяких кривошипно-шатунных механизмов, рис. 1.


Рис. 1. Роторно-поршневой двигатель Ванкеля и принцип его действия

Роторно-поршневые двигатели по схеме Ванкеля известны уже более пятидесяти лет. В 1960-х годах из двадцати наиболее крупных автомобилестроительных компаний 11 фирм приобрели лицензионные права на разработку и производство этих двигателей. На долю этих фирм приходилось около 70% мирового автомобильного производства, в т.ч. 80% производства легковых автомобилей США, 71% Японии, 44% Западно-европейских стран.

Проблемой этого двигателя долгое время считался быстрый износ уплотнителей. Однако в последствие эта проблема была преодолена и эти двигатели стали применять в автомобилестроении. Первый серийный автомобиль с роторным двигателем - немецкий спорткар NSU Wankelspider. Первый массовый (37204 экземпляра) - немецкий седан бизнес-класса NSU Ro80. В 1967 году японская Mazda начала продажи первого автомобиля «Cosmo Sport» оснащенного роторным двигателем мощностью в 110 лошадиных сил. Дальнейшие исследования помогли на 40 процентов снизить расход топлива и улучшить экологичность этих двигателей. К 1970 году суммарная продажа автомобилей с роторными двигателями достигла 100 тыс., в 1975 - 500 тыс., а к 1978 - перевалила за миллион. Двухцилиндровый двигатель «Renesis» фирмы Mazda объёмом всего 1,3 л выдавал мощность уже в 250 л. с. и занимал гораздо меньше места в моторном отсеке, чем обычные двигатели внутреннего сгорания. Современная модель двигателя Renesis-2 16X имеет еще меньший объём при большей мощности и меньше нагревается, рис. 2.


Рис. 2. Серийный автомобильный двигатель роторно-поршневого типа (Renesis-2 16X) компании Mazda

В этой связи возникает вполне правомерный вопрос: «а был ли мальчик?», то бишь была ли вообще проблема (а может быть и была, но не верно сформулирована)?

Кроме того, необходимость наличия весьма дорогостоящего полупроводникового преобразователя, рассчитанного на полную мощность генератора (необходимого, по утверждению автора, для обеспечения синусоидального выходного напряжения), резко снижает экономическую эффективность предлагаемого решения (если она вообще была!), не говоря уже о тысячах других, не решенных в этом проекте проблем, на которых, в виду вышесказанного, на данном этапе просто нет смысла останавливаться.

Господин О. Гуняков публикует все ту же (то есть, чужую) идею без всяких ссылок на ее истинного автора, слегка изменив конструкцию. Основное (то есть принципиальное, а не в мелких и ничего не значащих деталях) отличие его проекта от проекта Ю. Г. Скоромца) заключается в замене обмотки возбуждения генератора - постоянным магнитом и расширение области применения его установки в область больших мощностей (из переписки с автором выяснилось, что он рассчитывает на применение такого принципа в генераторах мощностью в мегаватты). Поскольку, с одной стороны, для идеи линейного дизель-генератора не важно, как будет выполнен источник магнитного поля (обмотка или постоянный магнит), а с другой стороны и для магнита не важно, в какой именно конструкции генератора он будет использован (с вращательным или возвратно-поступательным движением), то отсюда следует, что идея замены обмотки возбуждения генератора постоянным магнитом не имеет никакого отношения к конкретной конструкции генератора, а относится ко всем генераторам вообще. Но тут сразу возникает вопрос: если в генераторе мощностью в несколько мегаватт можно заменить сложную и дорогую обмотку возбуждения постоянным магнитом из современных сплавов (например, из широко известного сплава NdFeB), то почему же этого не делают сейчас, а используют это решение лишь в небольших маломощных генераторах? Совершенно очевидно, что для этого есть веские причины. Обсуждение этих причин должно содержать слишком много подробностей «из жизни генераторов» и «из жизни магнитов», для того, чтобы подробно освещать их в данном отзыве, но даже не это сейчас главное, а то, что эта идея О. Гунякова о применении постоянных магнитов никак не связана с идеей Ю. Г. Скоромца о линейном дизель-генераторе. Попытка О. Гунякова «привязать» свою идею с постоянными магнитами (которая, сама по себе, давным-давно известна и ничего нового не содержит) к чужой должна служить, по-видимому, для поднятия значимости его идеи.

Даже если не учитывать того обстоятельства, что постоянные магниты применяются только в генераторах очень ограниченной мощности, дополнительная проблема конкретной конструкции О. Гунякова заключается в том, что его генератор расположен в зоне высокой температуры, а постоянные магниты имеют довольно незначительную верхнюю рабочую температуру, ограниченную так называемой точкой Кюри, при которой магнит полностью теряет свои магнитные свойства. Так вот, для сплава NdFeB точка Кюри находится в пределах 300-350°С, а максимальная рабочая температура ограничена величиной 100-150°С. А теперь вспомним, какая температура бывает внутри камеры сгорания ДВС. Правильно, от 300 до 2000°С (во время разных циклов). Какая средняя температура будет на поверхности камеры сгорания, в зоне расположения магнитов? Правильно, намного больше той, на которую рассчитаны постоянные магниты. Следовательно, нужно обеспечить очень эффективное охлаждение магнитов. Как и чем? Весьма сомнительно, что температуру в области расположения магнитов можно снизить до 100°С приемлемыми, а не фантастическим способом. В этой связи следует отметить, что и вопрос об охлаждении самого линейного дизель-генератора не проработан в должной мере. Предлагаемое автором водяное охлаждение далеко не везде применимо. Например, на современных дизель-генераторных установках мощностью от сотен киловатт до нескольких мегаватт, предназначенных для резервного или аварийного электроснабжения (а это очень большой сектор рынка таких агрегатов), не используется водяное охлаждение. Такой агрегат охлаждается огромным (до двух метров в диаметре) вентилятором, насаженным на валу дизеля. Почему это сделано понятно: в аварийных ситуациях неоткуда и нечем подавать воду. Но где взять вращающийся вал для вентилятора в предлагаемой конструкции? Ага, использовать отдельный мощный электромотор, способный вращать двухметровый вентилятор... И тут наш проект начинает обрастать...

В заключение хотелось бы отметить, что ни Ю. Г. Скоромец, ни О. Гуняков не являются ни первооткрывателями этой идеи, ни авторами лучшей из конструкций. Идея эта сама по себе была известна задолго до публикаций обоих авторов. За последние годы были предложены и более удачные конструкции, чем те, которые мы обсуждаем. Например, в конструкции, предложенной Ondřej Vysoký, Josef Božek и др. из Чешского политехнического университета в 2007 году (то есть до публикации статьи Ю. Г. Скоромца) также используются постоянные магниты (авторы не претендуют на мощности в мегаватты), но в ней нет проблемы с нагревом магнитов, так как они могут находиться далеко от камер сгорания и могут быть отделены теплоизолирующей вставкой вала, на котором они закреплены. Изготовлены и испытаны небольшие лабораторные образцы таких агрегатов, рис. 3. В англоязычной литературе такие установки называются «Linear Combustion Engine (LCE)».



Рис. 3. Конструктивная схема и лабораторные образцы линейных дизель-электрических агрегатов, разработанных в Чехии

Имеется много публикаций на эту тему и в Интернете, и виде статьей и даже в виде книг (см. например, «Modeling and Control of Linear Combustion Engine»), хотя реально существующих изделий, присутствующих на рынке еще нет, как и нет каких бы то ни было технико-экономических обоснований, сравнения, например, с тем же двигателем Ванкеля. В этой связи для читателей журнала была бы, на наш взгляд, очень интересна квалифицированная обзорная информация о принципах построения таких систем, их сравнительная характеристика с другими устройствами для получения электроэнергии, информация о проблемах технических и экономических, о достигнутых результатах, а не подробное описание каких-то второстепенных деталей доморощенных конструкций, обладающих массой очевидных недостатков, но выдаваемых за величайшее достижение. Можно было бы только приветствовать публикацию автором такой обзорной статьи.

В технике существуют миллионы красивых, на первый взгляд, идей, не имеющих под собой экономической базы, или не учитывающих реальные технические проблемы, или просто не достаточно проработанных и поэтому не получивших реального воплощения. Достаточно обратиться к патентному фонду любой страны, чтобы увидеть миллионы оригинальных идей, пылящихся на полках. Такая же, по нашему мнению, судьба уготована и конкретным проектам Ю. Г. Скоромца и О. Гунякова. Тем не менее, нельзя утверждать, что миллионы не используемых сегодня патентов абсолютно бесполезны. Их очевидная польза состоит уже в том, что они стимулируют человеческую мысль и являются основой для новых идей. Как мы видим, творческая мысль продолжает активно работать и в рассмотренном направлении. Будем надеяться, что в недалеком будущем появится много новых перспективных идей в этом направлении, количество которых со временем перерастет в качество и они смогут когда-нибудь стать достаточно привлекательными для промышленности.

Решил показать на всеобщее обозрение свой генератор собраный на велосипедной втулке от заднего колеса. Я имею дачу на берегу реки. Часто летом ночюем с детьми на даче а электричества нет, и меня толкнуло собрать этот генератор. Вообще-то этот генератор уже второй. Первый был попроще и послабее. Но при ветре приёмник работал. Его фото нет, я его уже разобрал. Конструкция была не такой.

Все детали моего генератора при желании можно найти. Магниты брал от сгоревших громкоговорителей (колокольчик). Эти колокольчики висят на вокзалах и в парках ж.д оборудованых громкой связью. Мне понадобилось 4 сгоревших динамика. Попросил сгоревшие у людей обслуживающих эти устройства. Вытащил магниты, поделил на 16 частей болгаркой. Магниты стоят друг к другу одним полюсом.

На катушке 4 вывода, потому что я наматывал сразу 2 провода диаметром по1мм каждый. Если их запараллелить – увеличится ток, а соединяя последовательно увеличится напряжение, но ток соответственно будет меньше. В общем нужного напряжения добиваюсь методом эксперимента. Катушка намотана на куске трубы 50 с резьбой. С одной стороны щечка затянута гайкой с другой – щечка приварена. И прикреплена к алюминевой пластине а пластина уже к основанию. При необходимости можно разобрать и поменять катушку. Провод 1 мм сечением, сколько витков не считал.

Куда приспособить этот генератор ещё думаю, может заставлю речку работать.

Затраты на изготовление такие:

1 велосипедная втулка 250 руб

2. кусок трубы с гайкой 70руб

3. сварщику 50руб.

4. проволоку от старых тансформаторов и полоску дал тот же сварщик.

У генератора есть магнитное залипание. Стронуть с места требуется усилие. 10 -12 кгс на звездочке 70 мм. Около 3,6 Нм. На маленьких оборотах чувствуется небольшая вибрация. Пробовал подключать маленкий телевизор, и крутил руками. Немного не хватало скорости, чтоб кинескоп развернулся. При 1обороте в секунду генератор даёт 12 вольт 0,8 ампер.

Cамодельный тихоходный генератор для ветроустановки

Вид генератора в сборе, был протестирован на ветроустановке с трехлопастным ротором диаметром 2,5 м. При скорости ветра 12 м/сек, генератор выдавал зарядный ток-30 ампер, на 12 вольтовый аккумулятор.

Так-же использовались; магниты NdFeB, 1.5 – 18 штук, обмоточный провод – AWG 16, толстая фанера и элоксидная смола.

Тормозной диск был обработан на токарном станке, а именно сделан паз шириной равной диаметру магнита, для уменьшения действия центробежных сил.

Для соблюдения равного расстояния между магнитами идеально подошли кухонные спички, (после высыхания клея были удалены).

Далее был изготовлен статор из фанеры, с пазом для набора железа. Конечно генератор будет работать и без него, но не столь эффективно. Наличие железа расположенного за обмотками, увеличивает плотность магнитного потока почти вдвое.

Затем были намотаны 18 катушек и расположены строго напротив магнитов.

После чего катушки придавили прессом для равномерной толшины, и залили эпокситной смолой.

Электрическое соединение катушек – последовательное, т.е. генератор однофазный.

Для испытания, генератор был установлен на токарный станок, максимальная скорость вращения которого всего 500 оборотов в секунду.

Самодельный генератор на постоянных магнитах

Магниты у меня были дисковые 25*8 в количестве 12 штук, катушек столько же. Материал магнитов – NdFeB. а какой конкретно (N35, N40, N45) понятия не имею. Промежутки между магнитами 5 мм.

Диаметр статора 140 мм, внутренний – 90 мм, высота железа статора – 20 мм. Белое под магнитами – пластик. В нем отверстия просверлены под магниты, а под пластиком оцинковка, а под ней фанерка.

Число витков кажется по 50, диаметр провода 1мм. Все соединены последовательно: конец одной с концом другой, начало одной с началом другой. Я сначала не подумал соединил начало с концом. Напряжение на статоре 0. Даже приятно – значит катушки одинаковые получились.

Толщина катушки то ли 6 то ли 7 мм. Можно и до 10 увеличить. Я зазор разным делал. Разница в напряжении есть, но не очень страшная. И еще чего у меня неправильно это то что под магнитами подложен кусок кровельного железа около 0.5 мм толщиной. Надо бы раз в десять толще как я теперь понимаю для нормального замыкания потока.

В качестве железа для статора использовал какую-то стальную ленту шириной сантиметра 2. По-моему, та, которая используется при упаковке оборудования в большие деревянные ящики.

Никаких усилий для страгивания прикладывать не надо. Генератор получился с такими характеристиками: сопротивление обмоток 1 Ом, напряжение 1.5 вольта при 1 об/с.Все тщательно промазал кисточкой эпоксидкой так что по моему никакой дождь не страшен.

Вес всего ветряка килограммов 8 получился вместе с винтом, хвостом и поворотным узлом. Сам генератор 4 кг. Подшипники в генераторе запрессованы прямо в фанеру.

Поставил на ветряк 1.5 метра диаметром двухлопастный, т.е при 6 мс должен начать аккумулятор заряжать (быстроходность около 6 пытался получить, угол поворота лопасти очень маленький). Не ахти какая стартоваая скорость, но думал, что ветер такой не редкость.

Поставил вечером, ветра не было, но к утру ветер появился и он начал крутиться, но больше вольт 7 я с него не увидел. Понаблюдать больше одного дня выходных за ним не получилось, но приехав через неделю, а потом через две я убедился, что ветер в Подмосковье-редкость (не то что 12м/с как некоторые производители пишут расчетную, а вообще хоть какой-нибудь).

Т.к. аккумулятор щелочной на 110 А*ч зарядился только до 10 Вольт (был разряжен до 8, а может и вовсе прокис от долгих лет стояния в разряженном состоянии). Расчитывать генератор и весь ветряк надо на стартовую скорость метра 3.

Сейчас привез генератор с дачи. Буду проводить более детальные эксперименты. Сегодня вот уже лампочку спалил на 12 Вольт, дрель подключив. Подключал мой генератор к осциллографу – там вроде синус, на мой взгляд, ровный такой.

Из моего опыта постройки такого миниатюрного ветряка сделал несколько выводов (только про мощность ничего сказать не могу и про пропеллер тоже,переделывать буду):

  1. Генератор надо рассчитать, а потом умножить все это на два:-). По крайней мере, у меня с расчетами генератор разошелся почти в два раза.
  2. При изготовлении генератора, катушки должны быть с дыркой по всей ширине статора (или чуть больше ширины магнитов если дисков два). Это очевидно, но в целях уменьшения сопротивления я по незнанию сделал катушки маленькими.
  3. Ничего запихивать в катушки для увеличения магнитного потока через них не надо. Я попробовал наложить металлических обрезков, ничего не поменялосьл, но стронуть стало невозможно, пришлось все выковыривать. А я все эпоксидкой залил.
  4. Система ограничения мощности не нужна в подмосковье. Может у Финского залива это актуально, но у нас ограничивать нечего. Даже на otherpower.com первые ветряки они делали без складывающегося хвоста и ничего у них не ломалось. А в горах ветер посильнее чем у нас бывает.
  5. Никаких скользящих контактов. Ну, не видел я чтобы мой ветряк хоть пару оборотов сделал вокруг своей оси. Ветер на самом деле редко меняет свое направление на диаметрально противоположное. Спустил многожильный провод на землю и привезал к колышку. Хотя я сделал на скользящих контактах, а потом понял, что это не нужно. Даже в Сапсане на весьма мощных ветряках в мачте спрятан перекручивающийся кабель.
  6. Поворотный узел на подшипниках – долой. Площадь хвоста из фанеры увеличить для компенсации трения возросшего, и все.

Даже легкий ветер поворачивал мой ветряк с небольшим хвостом, хотя мачта была наклонена от вертикали. У меня было с подшипниками, а мачта из плохо закрепленного елового ствола.

Ни на каком импортном самопальном ветряке я такого не видел. Лишние подшипники смазывать – никакого удовольствия, по-моему. Да и хорошие подшипники очень дорогие. А зачем разоряться, когда не очень то и надо?

Тихоходный генератор своими руками на магнитах


Афанасьев Юрий Самодельный генератор Решил показать на всеобщее обозрение свой генератор собраный на велосипедной втулке от заднего колеса. Я имею дачу на берегу реки. Часто летом ночюем с…

ГЕНЕРАТОР НА ПОСТОЯННЫХ МАГНИТАХ (аксиальный или дисковый)

Трехфазный синхронный генератор переменного тока без магнитного залипания с возбуждением от постоянных неодимовых магнитов, 12 пар полюсов.

Очень давно еще в советские времена в журнале “Моделист Конструктор” была опубликована статья посвященная построению ветряка роторного типа. С тех пор у меня появилось желание построить что то подобное на своем дачном участке, но до реальных действий дело так и не дошло. Все изменилось с появлением неодимовых магнитов. Собрал кучу информации в интернете и вот что получилось.

Устройство генератора: Два стальных диска из низкоуглеродистой стали с наклеенными магнитами жестко соединены между собой через распорную втулку. В зазоре между дисками расположены неподвижные плоские катушки без сердечников. ЭДС индукции возникающая в половинках катушки противоположна по направлению и суммируется в общую ЭДС катушки. ЭДС индукции возникающая в проводнике движущемся в постоянном однородном магнитном поле определяется по формуле E=B·V·L где: B -магнитная индукция V -скорость перемещения L -активная длина проводника. V=π·D·N/60 где: D -диаметр N -скорость вращения. Магнитная индукция в зазоре между двумя полюсами обратно пропорциональна квадрату расстояния между ними. Генератор собран на нижней опоре ветряной турбины.

Схема трехфазного генератора, для простоты развернута на плоскость.

На рис. 2 показана схема расположения катушек когда их количество в два раза больше, правда в этом случае увеличивается и зазор между полюсами. Катушки перекрываются на 1/3 от ширины магнита. Если ширину катушек уменьшить на 1/6 тогда они встанут в один ряд и зазор между полюсами не изменится. Максимальный зазор между полюсами равен высоте одного магнита.

ОДНОФАЗНЫЙ ГЕНЕРАТОР

Однофазный синхронный генератор переменного тока и одна волновая катушка.

Встречно намотанная катушка уменьшает индуктивное сопротивление генератора. Величина встречной ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки генератора и зависит от тока в нагрузке. Индуктивность катушки прямо пропорциональна линейным размерам, квадрату числа витков и зависит от способа намотки.

Схема однофазного генератора рис. 1, для простоты развернута на плоскость.

Для повышения КПД на рис. 2 показана схема генератора состоящая из двух одинаковых катушек. Чтобы зазор между полюсами не увеличился кольцевые обмотки необходимо вставить друг в друга.

Однофазный синхронный генератор и петлевые распределенные катушки.

ВЕТРЯНАЯ ТУРБИНА (ветродвигатель)

Ветряная турбина с вертикальной осью вращения и шестью лопастями.

Устройство турбины: Состоит из статора, шесть неподвижных лопастей (для экранирования и форсирования поступающего ветра) и ротора, шесть вращающихся лопастей. Сила ветра оказывает влияние на лопасти ротора и на входе в турбину и на выходе из неё. Для верхней и нижней опоры используются ступицы от автомобиля. Не создает шума, не идет в разнос при сильном ветре, не требует ориентирования на ветер, не требует высокой мачты. Большой коэффициент использования ветра, большой крутящий момент, вращение начинается при очень слабом ветре.

ИНДУКТОРНЫЙ ГЕНЕРАТОР

Однофазный синхронный генератор переменного тока с обмоткой возбуждения на статоре без щеток, 12 пар полюсов.

Долго думал над тем как предотвратить перезаряд аккумулятора не применяя в конструкции механические устройства для повышения надежности. Индукторный генератор выполняет функцию сброса лишней энергии. В качестве нагрузки используется элемент нагревания, можно нагреть воду или кафельные полы.

Устройство генератора: Генератор собран на верхней опоре ветряной турбины. К неподвижному кольцу из низкоуглеродистой стали крепятся 24 стальных сердечника с катушками, между катушек на кольцо намотана обмотка возбуждения. Возбуждение на генератор подается через электрическую схему от нижнего генератора. Генератор использует от 3% до 5% вырабатываемой мощности на возбуждение. Любой электромагнит является усилителем мощности источника тока. Генератор также является электромагнитной муфтой скольжения уменьшая нагрузку на подшипники. На каждом подшипнике теряется 5% вращающего момента, на шестерне 7-10%. Частота переменного тока вычисляется по формуле f=p·n/60 где: p -количество пар полюсов n -скорость вращения. Например: f=p·n/60=12·250/60=50 Гц.

Схема индукторного генератора, для простоты развернута на плоскость.

На рис. 2 показана схема индукторного генератора с использованием меньшего количества железа, следовательно и потери в железе будут меньше. Обмотка возбуждения состоит из 12 последовательно соединенных катушек.

ЭЛЕКТРИЧЕСКАЯ СХЕМА

Электрическая принципиальная схема устройства для подключения обмотки возбуждения генератора.

Ток возбуждения начинает поступать на генератор только при достижении на выходе трехфазного выпрямителя напряжения 14 вольт.

МАГНИТНЫЙ ДВИГАТЕЛЬ

Магнитный двигатель будет вращать генератор если нет ветра.

Электромагнитное поле создается электрическим током т.е. направленным движением электрических зарядов (свободных электронов). Физическими опытами было подтверждено, что магнитное поле постоянного магнита также создается направленным движением электрических зарядов (свободных электронов). Учитывая общие электромагнитные закономерности, можно по аналогии с электродвигателем создать магнитный двигатель для преобразования магнитной энергии в механическую энергию вращения. Основным условием для роторных двигателей является взаимодействие магнитных полей по круговым замкнутым траекториям. Этим требованиям отвечает составной магнит “Сибирский Коля”.

НЕПОДВИЖНЫЙ ГЕНЕРАТОР НА ПОСТОЯННЫХ МАГНИТАХ

Неподвижный генератор – это статический электромагнитный усилитель мощности.

Уже давно известно, что изменение магнитного поля проходящего через провод будет генерировать в нем электродвижущую силу (ЭДС). Изменение магнитного потока от постоянного магнита в сердечнике неподвижного генератора создается с помощью электронного управления, а не механическим движением. Магнитным потоком в сердечнике управляет автогенератор. Работает автогенератор в режиме резонанса и потребляет от источника питания ничтожно малую мощность.

Колебания автогенератора отклоняют по очереди магнитные потоки от постоянных магнитов в левую и правую сторону сердечника из наборного железа или феррита. Мощность генератора увеличивается с повышением частоты колебаний автогенератора. Запуск осуществляется подачей кратковременного импульса на выход генератора. Очень важно чтобы постоянный магнит не вызвал переход материала сердечника в область магнитного насыщения. Неодимовые магниты имеет магнитную индукцию в диапазоне 1,15-1,45 Тл. Трансформаторное железо имеет индукцию насыщения 1,55-1,65 Тл. Сердечники на основе порошка из железа имеет индукцию насыщения 1,5-1,6 Тл., и потери меньше чем у трансформаторного железа. Сердечники из магнитомягких ферритов марганец-цинковых марок имеют индукцию насыщения 0,4-0,5 Тл., для борьбы с насыщением необходим воздушный зазор.

Схема генератора с перемагничиванием сердечника силовой катушки.

Схема неподвижного генератора на тороидальных (кольцевых) сердечниках.

Три кольца, восемь магнитов, четыре катушки управления, восемь силовых катушек.

Ветроэлектростанция ВЭС


Трехфазный синхронный генератор переменного тока без магнитного залипания с возбужденим от постоянных неодимовых магнитов и ветряная турбина с вертикальной осью вражения

Тихоходные генераторы на постоянных магнитах своими руками

Живу я в маленьком городке Харьковской обл., часный дом, небольшой участок.

Сам я, как говорит сосед, ходячий генератор идей, так как практически всё в своем

хозяйстве сделано своими руками . Ветер хоть и небольшой, но практически постоянно дует, и тем самым соблазняет использовать свою энергию.

После нескольких неудачных попыток с тракторным самовозбуждающимся генератором идея создания ветрогениратора засела в мозгу еще больше.

Начал искать и после двух месяцев поисков в инете, множества скачанных файлов, прочтенных форумов и советов я окончательно определился с постройкой генератора.

За основу была взята конструкция ветряка Бурлака Виктора Афанасьевича http://rosinmn.ru/sam/burlaka с небольшими конструктивными изменениями.

Основной задачей была постройка генератора с того материала, который есть, с минимумом затрат. Поэтому каждый, кто попытается сделать подобную конструкцию должен исходить с того материала, который у него есть, главное желание и понять принцип работы.

Для изготовления ротора использовал листовой кусок метала толщиной 20мм (что было) с которого по моим чертежам кум выточил и разметил на 12 частей два диска диаметром 150 мм и еще один диск под винт который разметил на 6 частей диаметром 170 мм.

Купил через Интернет 24 шт. дисковых неодимовых магнита размером 25×8 мм, которые приклеил к дискам, (очень выручила разметка). Осторожно не подставляете пальцы!

Перед тем как приклеить магниты к стальному диску маркером нанесите на магниты полярность, это очень поможет вам избежать ошибок. После размещения магнитов (12 шт. на диск и чередуйте полярность), до половины залил их эпоксидной смолой.

Кликните по картинке что бы посмотреть в полном размере.

Для изготовления статора использовал эмаль-провод ПЭТ-155 диаметром 0,95 мм (купил на частном предприятии Хармедь). Намотал 12 катушек по 55 витков каждая, толщина обмоток получилась 7 мм. Для намотки изготовил несложный разборный каркас. Намотку катушек делал на самодельном намоточном станке (делал ещё во времена застоя).

Затем разместил 12 катушек по шаблону и зафиксировал их положение изолентой на тканевой основе. Выводы катушек распаял последовательно начало с началом, конец с концом. Я использовал 1-фазную схему включения.

Для изготовления формы под заливку катушек эпоксидной смолой склеил две прямоугольные заготовки 4-х мм фанеры. После высыхания получилась прочная 8 мм заготовка. С помощью сверлильного станка и приспособления (балерина) вырезал в фанере отверстие диаметром 200 мм, а с вырезанного диска вырезал центральный диск диаметром 60 мм. Заранее заготовленные ДСП заготовки прямоугольной формы обтянул плёнкой и по краях закрепил стиплером, затем по разметке разместил вырезанный центр (обтянутый скотчем), а также вырезанную заготовку, обмотанную скотчем.

Форму до половины залил эпоксидной смолой, на дно положил стеклоткань, затем катушки, сверху стеклоткань, долил эпоксидку, немного выждал и сверху сдавил вторым куском ДСП также обтянутым пленкой. После застывания извлёк диск с катушками, обработал, покрасил, просверлил отверстия

Ступицу, а также основу поворотного узла изготовил с буровой трубы НКТ с внутренним диаметром 63 мм. Были изготовлены гнёзда под 204 подшипник и приварены к трубе. С задней стороны тремя болтами прикручена крышка с прокладкой из маслостойкой резины, с передней стороны прикручена крышка с сальником. Внутрь, между подшипниками, через специальное отверстие залил автомобильное полусинтетическое масло. На вал надел диск с неодимовыми магнитами, причем поскольку паз под шпонку сделать небыло возможности на валу сделал углубления на половину диаметра шарика с 202 подшипника т.е. 3,5 мм, а на дисках высверлил паз 7 мм сверлом предварительно выточив боночку и запрессовал её в диск. После извлечения боночки в диске получился ровный, красивый паз под шарик.

Далее закрепил статор тремя латунными шпильками, вставил промежуточное кольцо с расчетом чтобы статор не затирало и надел второй диск с неодимовыми магнитами (магниты на дисках должны иметь противоположную полярность, т.е. притягиваться) Здесь очень осторожно с пальцами!

Винт изготовил с канализационной трубы диаметром 160 мм

Кстати неплохой получается винт.Поэтому принципу изготовлен последний винт с алюминевой трубы 1,3м (смотрите выше)

Разметил трубу, болгаркой вырезал заготовки, по концах стянул болтами и електрорубанком обработал пакет. Затем раскрутил пакет и каждую лопасть обработал отдельно, подгоняя вес на электронных весах.

Защита от ураганного ветра выполнена по классической зарубежной схеме, т. е. ось вращения смещена от центра.

Свой хвост ветряка я подгонял методом подпиливания.

Вся конструкция насаженна на два 206 подшипника, которые закреплены на оси с внутренним отверстием под кабель и приваренной к двухдюймовой трубе.

Подшипники плотно входят в корпус ветроустановки, что позволяет без каких либо усилий и люфтов свободно поворачиваться конструкции. Кабель проходит внутри мачты к диодному мосту.

на фото первоначальный вариант

Для изготовления ветроголовки, не учитывая двух месяцев поиска решений, ушло полтора месяца, сейчас у нас февраль месяц, снег и холод похоже за всю зиму, поэтому основных испытаний еще не проводил, но даже на этом расстоянии от земли автомобильная лампочка 21 ватт перегорела. Жду весны, готовлю трубы под мачту. Эта зима пролетела у меня быстро и интересно.

Прошло немного времени с того момента когда разместил на сайте свой ветряк, но весна так толком и не пришла, землю копать чтобы замуровать стол под мачту еще нельзя – земля мёрзлая да и грязь везде, поэтому времени для испытаний на временной 1,5 м. стойке было предостаточно, а теперь подробней.

После первых испытаний винт случайно зацепил трубу, это я пытался зафиксировать хвост, чтобы ветряк не уходил из под ветра и посмотреть какая будет максимальная мощность. В итоге мощность успел зафиксировать примерно ватт 40, после чего винт благополучно разлетелся в щепки. Неприятно, но наверное полезно для мозгов. После этого я решил поэкспериментировать и намотал новый статор. Для этого изготовил новую форму под заливку катушек. Форму тщательно смазал автомобильным литолом, чтобы лишнее не пристало. Катушки теперь немного уменьшил по длине, благодаря чему в сектор теперь поместилось 60 витков 0,95 мм. толщина намотки 8 мм. (в конечном итоге статор получился 9 мм), причем длина провода осталась прежней.

Винт теперь сделал с более прочной трубы 160 мм. и трехлопастным, длина лопасти 800 мм.

Новые испытания сразу показали результат, теперь ГЕНА выдавал до 100 ватт, галогенная автомобильная лампочка в 100 ватт горела в полный накал, и чтобы её не спалить на сильных порывах ветра лампочку отключал.

Замеры на автомобильном акумуляторе 55 А.ч.

Ну, вот уже середина августа, и как я обещал, попытаюсь закончить эту страничку.

Сначала то, что пропустил

Мачта один из ответственных элементов конструкции

Один из стыков (труба меньшего диаметра входит внутрь большей)

и поворотный узел

3-х лопастный винт (рыжая канализационая труба диаметром 160 мм.)

Начну с того, что сменил несколько винтов и остановился на 6-ти лопастном с алюминиевой трубы диаметром 1,3 м. хотя большую мощность давал винт с ПВХ трубы 1,7 м.

Основная проблема была в том чтобы заставить заряжаться АКБ от малейшего вращения винта и вот здесь на помощь пришел блокинг генератор который даже при входном напряжении в 2 v дает заряд АКБ – пускай маленьким током, но лучше чем разряд, а на нормальных ветрах вся энергия на АКБ поступает через VD2 (смотрите по схеме), и идет полноценный заряд.

Конструкция собрана прямо на радиаторе полунавесным монтажом

Контролер заряда тоже использовал самодельный, схема простая, слепил как всегда с того, что было под рукой, нагрузкой служит два витка нихромового провода (при заряженном АКБ и сильном ветре нагревается до красна) Все транзисторы ставил на радиаторы (с запасом), хотя VT1 и VT2 практически не греются, а вот VT3 на радиатор ставить обязательно! (при продолжительном срабатывании контролёра VT3 греется прилично)

фото готового контролера

Схема подключения ветряка к нагрузке выглядит так:

фото готового системного блока

Нагрузкой у меня как и планировалось, является свет в туалете и летнем душе + уличное освещение (4 светодиодные лампы которые включаются автоматически через фотореле и освещают двор целую ночь,с восходом солнца опять срабатывает фотореле которое отключает освещение и идет заряд АКБ.И это на убитой АКБ (в прошлом году снял с авто)

на фото снято защитное стекло (в верху фотодатчик)

Фотореле купил готовое для сети 220 V и переделал на питание от 12 V (перемкнул входной конденсатор и последовательно стабилитрону подпаял резистор в 1К)

Теперь самое ГЛАВНОЕ!

По своему опыту советую для начала сделать небольшой ветрячок, набратся опыта и знаний и понаблюдать что можно поиметь с ветров вашей местности, ведь можно потратить кучу денег, сделать мощный ветряк, а силы ветра не хватит чтобы получать теже 50 ватт и будет ваш ветряк типа подводной лодки в гараже.

Простейший анемометр. Квадрат сторона 12 см. на 12 см. на нитке 25 см. привязан тенисный шарик.

Мы никогда незадумываемся насколько сильным бывает даже маленький ветерок,но стоит посмотреоть с какой скоростью иногда раскручивается турбина и сразу понимаеш какая это мощь

Ветер, ветер ты могуч. (фото со двора)

Ветрогенератор своими руками с аксиальным генератором на неодимовых магнитах !

(ветрогенератор своими руками,ветряк с аксиальным генератором,ветряк своими руками,генератор на неодимовых магнитах,Самодельный ветряк, самовозбуждающийся генератор)

Тихоходные генераторы на постоянных магнитах своими руками


Тихоходные генераторы на постоянных магнитах своими руками Живу я в маленьком городке Харьковской обл., часный дом, небольшой участок. Сам я, как говорит сосед, ходячий генератор

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости