Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости

Полимерный пластик характеризуется прочностью, практичностью, долговечностью и легкостью монтажа. При этом срок эксплуатации материала зависит от его технических характеристик. Сегодня мы рассмотрим столь актуальную для многих строителей и огородников тему, как пропускает ли поликарбонат ультрафиолетовые лучи.

Ультрафиолетовая защита

Поликарбонат считается одним из самых прочных и крепких полимеров. Однако данный материал разрушается под воздействием солнечных лучей. Так, листы полимерного пластика, используемые для обшивки тепличных сооружений, садовых оранжерей, беседок, веранд, террас и других открытых строений, быстро приходят в негодность. Спустя 2–3 года от момента возведения постройки обшивка полностью теряет свои первоначальные физические свойства и качества.

Поликарбонат не пропускает УФ лучи, что делает его идеальным материалом для обшивки теплицы

Изготовители полимерного пластика нашли способ повысить уровень износостойкости материала. Поликарбонат стали изготавливать со специальным ультрафиолетовым покрытием. Защитный слой представлял собой некие стабилизаторы-гранулы, которые добавлялись в материал при первичной обработке. К сожалению, применение подобного рода технологий требует значительного капиталовложения. Соответственно возрастает стоимость строительного материала.

В настоящее время полимерный пластик изготавливается с тонким ультрафиолетовым покрытием, которое так и называют – УФ-защита.

Существует два способа нанесения ультрафиолетового слоя:

  1. Напыление. Поверхность панели полимерного пластика покрывается тонким слоем специального раствора, который внешне похож на промышленную краску. Данный метод имеет существенные недостатки. В процессе транспортирования, монтажа и эксплуатации полотна защитный слой стирается, в результате чего полимер становится непригодным к эксплуатации. Нанесенная в виде напыления, УФ-защита неустойчива к атмосферным осадкам и механическим воздействиям извне.
  2. Экструзионная защита от прямых солнечных лучей. Специальный слой, предотвращающий разрушение полимера, вживляется в поверхность поликарбонатной панели. Полотно устойчиво к физическим и химическим повреждениям, а также различным атмосферным явлениям. Срок эксплуатации поликарбоната с экструзионной защитой от солнца составляет 20–25 лет.

Видео «Защита поликарбоната от ультрафиолета»

Из этого видео вы узнаете, какая бывает защита от ультрафиолета у сотового поликарбоната.

Правила выбора

Многие интересуются, как определить наличие УФ-покрытия на поверхности листа полимерного пластика.

Ответственные производители наклеивают защитную пленку на листы поликарбоната. Прозрачный бесцветный полиэтилен говорит о том, что с данной стороны панели защита от солнца отсутствует. Прозрачная цветная пленка – первый ориентир наличия защитного ультрафиолетового слоя.

  • название и тип строительного материала;
  • технические характеристики поликарбоната;
  • рекомендации об особенностях погрузки, разгрузки, транспортирования, монтажа и ухода за полимером;
  • сведения о компании-изготовителе.

Некоторые виды листов поликарбоната обладают усиленной защитой от
ультрафиолета, подбирать их стоит в зависимости от предназначения

Зачастую маркировка наносится на цветной полиэтилен, который помогает избежать царапин, вмятин, сколов и трещин внешней стороны поликарбоната.

Если пленка отсутствует, поверните полимер к солнцу. Сторона с ультрафиолетовым покрытием отражает характерные фиолетовые блики на солнце.

При выборе строительного материала, в том числе и полимерного пластика, нужно ориентироваться на технические свойства и качества материала.

Поликарбонат с защитой ультрафиолетового типа является гарантией долговечности и прочности обшивки строения.

Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения. Мы подготовили перечень наиболее часто встречающихся вопросов об ультрафиолете и ответы на них.

Что такое ультрафиолетовое излучение?

Спектр электромагнитного излучения достаточно широк, но глаз человека чувствителен только к определенной области, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, являются потенциально опасными и включают в себя инфракрасную (с волн длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Излучения, имеющие более короткую длину волны, чем ультрафиолетовое, называются рентгеновским и γ-излучениями. Если длина волны больше, чем аналогичный показатель у инфракрасного излучения, то это радиоволны. Таким образом, ультрафиолетовое (УФ) излучение – это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100–380 нм.

Какие диапазоны имеет ультрафиолетовое излучение?

Как видимый свет можно разделить на составляющие разных цветов, которые мы наблюдаем при возникновении радуги, так и УФ-диапазон, в свою очередь, имеет три составляющие: УФ-A, УФ-B и УФ-C, причем последняя является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200–280 нм, однако оно в основном поглощается верхними слоями атмосферы. УФ-B-излучение имеет длину волн от 280 до 315 нм и считается излучением средней энергии, представляющим опасность для органа зрения человека. УФ-A-излучение – это наиболее длинноволновая составляющая ультрафиолета с диапазоном длин волн 315–380 нм, которая имеет максимальную интенсивность к моменту достижении поверхности Земли. УФ-A-излучение глубже всего проникает в биологические ткани, хотя его повреждающее действие меньше, чем у УФ-B-лучей.

Что означает само название «ультрафиолет»?

Это слово означает «сверх (выше) фиолета» и происходит от латинского слова ultra («сверх») и названия самого короткого излучения видимого диапазона – фиолетового. Хотя УФ-излучение никак не ощущается человеческим глазом, некоторые животные – птицы, рептилии, а также насекомые, например пчелы, – могут видеть в таком свете. Многие птицы имеют раскраску оперенья, которая невидима в условиях видимого освещения, но хорошо различима в ультрафиолетовом. Некоторых животных также легче заметить в лучах ультрафиолетового диапазона. Многие фрукты, цветы и семена воспринимаются глазом более отчетливо при таком освещении.

Откуда возникает ультра-фиолетовое излучение?

На открытом воздухе главным источником УФ-излучения является солнце. Как уже было сказано, частично оно поглощается верхними слоями атмосферы. Поскольку человек редко смотрит прямо на солнце, то основной вред для органа зрения возникает в результате воздействия рассеянного и отраженного ультрафиолета. В помещении УФ-излучение возникает при использовании стерилизаторов для медицинских и косметических инструментов, в соляриях для формирования загара, в процессе применения различных медицинских диагностических и терапевтических приборов, а также при отверждении композиций пломб в стоматологии.

В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи, поэтому применение защитных средств предписано как обязательное для сварщиков. Флюоресцентные лампы, широко используемые для освещения на работе и дома, также являются источниками УФ-излучения, но уровень последнего очень незначителен и не представляет серьезной опасности. Галогеновые лампы, которые также применяются для освещения, дают свет с УФ-составляющей. Если человек находится близко от галогеновой лампы без защитного колпака или экрана, то уровень УФ-излучения может вызвать у него серьезные проблемы с глазами.

От чего зависит интенсивность воздействия ультрафиолета?

Его интенсивность зависит от многих факторов. Во-первых, высота солнца над горизонтом меняется в зависимости от времени года и суток. Летом в дневные часы интенсивность УФ-B-излучения максимальна. Существует простое правило: когда ваша тень короче, чем ваш рост, то вы рискуете получить на 50 % больше такого излучения.

Во-вторых, интенсивность зависит от географической широты: в экваториальных районах (широта близка к 0°) интенсивность УФ-излучения наиболее высокая – в 2–3 раза выше, чем на севере Европы.

В-третьих, интенсивность возрастает с увеличением высоты над уровнем моря, так как соответствующим образом уменьшается слой атмосферы, способный поглощать ультрафиолет, поэтому большее количество наиболее высокоэнергетического коротковолнового УФ-излучения достигает поверхности Земли.

В-четвертых, на интенсивность излучения влияет рассеивающая способность атмосферы: небо представляется нам синим из-за рассеивания коротковолнового голубого излучения видимого диапазона, а еще более коротковолновый ультрафиолет рассеивается гораздо сильнее.

В-пятых, интенсивность излучения зависит от наличия облаков и тумана. Когда небо безоблачно, УФ-излучение достигает максимума; плотные облака снижают его уровень. Однако прозрачные и редкие облака мало влияют на уровень УФ-излучения, водяной пар тумана может привести к увеличению рассеяния ультрафиолета. Малооблачную и туманную погоду человек может ощущать как более холодную, однако интенсивность УФ-излучения остается практически такой же, как и в ясный день.

В-шестых, количество отраженного ультрафиолета варьирует в зависимости от вида отражающей поверхности. Так, для снега отражение составляет 90 % падающего УФ-излучения, для воды, почвы и травы – примерно 10 %, а для песка – от 10 до 25 %. Об этом необходимо помнить, находясь на пляже.

Каково воздействие ультрафиолета на организм человека?

Длительное и интенсивное воздействие УФ-излучения может быть вредным для живых организмов – животных, растений и человека. Заметим, что некоторые насекомые видят в УФ-A-диапазоне, а они являются неотъемлемой частью экологической системы и каким-либо образом приносят пользу человеку. Наиболее известный результат воздействия ультрафиолета на организм человека – это загар, который до сих пор является символом красоты и здорового образа жизни. Однако длительное и интенсивное воздействие УФ-излучения может привести к развитию раковых заболеваний кожи. Необходимо помнить, что облака не блокируют ультрафиолет, поэтому отсутствие яркого солнечного света не означает, что защита от УФ-излучения не нужна. Наиболее вредная составляющая данного излучения поглощается озоновым слоем атмосферы. Факт уменьшения толщины последнего означает, что в будущем защита от ультрафиолета станет еще более актуальной. По оценкам ученых, снижение количества озона в атмосфере Земли всего на 1 % приведет к росту раковых заболеваний кожи на 2–3%.

Какую опасность ультрафиолет представляет для органа зрения?

Существуют серьезные лабораторные и эпидемиологические данные, связывающие длительность воздействия ультрафиолета с заболеваниями глаз: катарактой, дегенерацией макулы, птеригиумом и др. По сравнению с хрусталиком взрослого хрусталик ребенка существенно более проницаем для солнечной радиации, и 80 % кумулятивных последствий воздействия ультрафиолетовых волн накапливаются в организме человека до достижения им 18-летнего возраста. Максимально подверженным проникновению излучения хрусталик является непосредственно после рождения младенца: он пропускает до 95 % падающего УФ-излучения. С возрастом хрусталик начинает приобретать желтый оттенок и становится не столь прозрачным. К 25 годам менее 25 % падающих ультрафиолетовых лучей достигают сетчатки. При афакии глаз лишен естественной защиты хрусталика, поэтому в такой ситуации важно пользоваться УФ-поглощающими линзами или фильтрами.

Следует учитывать, что целый ряд медицинских препаратов обладают фотосенсибилизирующими свойствами, то есть увеличивают последствия от воздействия ультрафиолета. Оптики и оптометристы должны иметь представление об общем состоянии человека и применяемых им препаратах для того, чтобы дать рекомендации по поводу применения средств защиты.

Какие существуют средства защиты глаз?

Наиболее эффективный способ защиты от ультрафиолета – прикрытие глаз специальными защитными очками, масками, щитками, которые полностью поглощают УФ-излучение. На производстве, где применяются источники УФ-излучения, использование таких средств является обязательным. Во время пребывания на открытом воздухе в яркий солнечный день рекомендуется носить солнцезащитные очки со специальными линзами, которые надежно защищают от УФ-излучения. Такие очки должны иметь широкие заушники или прилегающую форму для предупреждения проникновения излучения сбоку. Бесцветные очковые линзы также могут выполнять эту функцию, если в их состав введены добавки-абсорберы или проведена специальная обработка поверхности. Хорошо прилегающие солнцезащитные очки защищают как от прямого падающего излучения, так и от рассеянного и отраженного от различных поверхностей. Эффективность использования солнцезащитных очков и рекомендации по их применению определены путем указания категории фильтра, светопропусканию которого соответствуют очковые линзы.

Какие стандарты регламентируют светопропускание линз солнцезащитных очков?

В настоящее время в нашей стране и за рубежом разработаны нормативные документы, регламентирующие светопропускание солнцезащитных линз согласно категориям фильтров и правила их применения. В России это ГОСТ Р 51831–2001 «Очки солнцезащитные. Общие технические требования», а в Европе – EN 1836: 2005 «Personal eye protection – Sunglasses for general use and filters for direct observation of the sun».

Каждый вид солнцезащитных линз разработан для определенных условий освещенности и может быть отнесен к одной из категорий фильтров. Всего их пять, и они нумеруются от 0 до 4. Согласно ГОСТ Р 51831–2001, светопропускание T,  %, солнцезащитных линз в видимой области спектра может составлять от 80 до 3–8 % в зависимости от категории фильтра. Для УФ-B- диапазона (280–315 нм) этот показатель не должен быть больше 0,1T (в зависимости от категории фильтра он может быть от 8,0 до 0,3–0,8 %), а для УФ-A-излучения (315–380 нм) – не больше 0,5T (в зависимости от категории фильтра – от 40,0 до 1,5–4,0 %). В то же время производители качественных линз и очков устанавливают более жесткие требования и гарантируют потребителю полное отрезание ультрафиолета до длины волны 380 нм или даже до 400 нм, о чем свидетельствует специальная маркировка на линзах очков, их упаковке или сопроводительной документации. Следует отметить, что для линз солнцезащитных очков эффективность защиты от ультрафиолета не может однозначно определяться степенью их затемнения или стоимостью очков.

Правда ли, что ультрафиолет более опасен, если человек носит некачественные солнцезащитные очки?

Это действительно так. В естественных условиях, когда человек не носит очки, его глаза автоматически реагируют на избыточную яркость солнечного света изменением размера зрачка. Чем ярче свет, тем меньше зрачок, и при пропорциональном соотношении видимого и ультрафиолетового излучения этот защитный механизм работает весьма эффективно. Если же применяется затемненная линза, то освещение кажется менее ярким и зрачки увеличиваются, позволяя большему количеству света достигать глаз. В том случае, когда линза не обеспечивает надлежащую защиту от ультрафиолета (количество видимого излучения уменьшается больше, чем ультрафиолетового), суммарное количество попадающего в глаза ультрафиолета оказывается более значительным, чем при отсутствии солнцезащитных очков. Именно поэтому окрашенные и светопоглощающие линзы должны содержать УФ-абсорберы, которые снижали бы количество УФ-излучения пропорционально уменьшению излучения видимого спектра. По международным и отечественным стандартам светопропускание солнцезащитных линз в УФ-области регламентируется как пропорционально зависимое от светопропускания в видимой части спектра.

Какой оптический материал для очковых линз обеспечивает защиту от ультрафиолета?

Некоторые материалы для очковых линз обеспечивают поглощение УФ-излучения благодаря своей химической структуре. Оно активизирует фотохромные линзы, которые в соответствующих условиях блокируют его доступ к глазу. Поликарбонат содержит группы, поглощающие излучение в ультрафиолетовой области, поэтому он оберегает глаза от ультрафиолета. CR-39 и другие органические материалы для очковых линз в чистом виде (без добавок) пропускают некоторое количество УФ-излучения, и для надежной защиты глаз в их состав вводят специальные абсорберы. Эти компоненты не только защищают глаза пользователей, обеспечивая отрезание ультрафиолета до 380 нм, но и предупреждают фотоокислительную деструкцию органических линз и их пожелтение. Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ-излучения, если в состав шихты для его производства не введены специальные добавки. Такие линзы можно использовать в качестве солнцезащитных фильтров только после нанесения качественных вакуумных покрытий.

Правда ли, что эффективность защиты от ультрафиолета для фотохромных линз определяется их светопоглощением в активированной стадии?

Некоторые пользователи очков с фотохромными линзами задают подобный вопрос, так как беспокоятся о том, будут ли они надежно защищены от ультрафиолета в пасмурный день, когда нет яркого солнечного излучения. Следует отметить, что современные фотохромные линзы поглощают от 98 до 100 % УФ-излучения при любых уровнях освещенности, то есть вне зависимости от того, являются ли они в данный момент бесцветными, средне- или темно-окрашенными. Благодаря этой особенности фотохромные линзы подходят для пользователей очков, находящихся на открытом воздухе в различных погодных условиях. В настоящее время растет число людей, которые начинают понимать, какую опасность представляет длительное воздействие УФ-излучения для здоровья глаз, и многие выбирают фотохромные линзы. Последние отличаются высокими защитными свойствами в сочетании с особым преимуществом – автоматическим изменением светопропускания в зависимости от уровня освещенности.

Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения?

Сама по себе интенсивная окраска солнцезащитных линз не дает гарантии защиты от ультрафиолета. Следует отметить, что дешевые органические солнцезащитные линзы, выпущенные в условиях крупносерийного производства, могут иметь достаточно высокий уровень защиты. Как правило, сначала смешивают специальный УФ-абсорбер с сырьем для производства линз и делают бесцветные линзы, а затем осуществляют окрашивание. Добиться обеспечения УФ-защиты для солнцезащитных минеральных линз сложнее, так как их стекло пропускает больше излучения, чем многие виды полимерных материалов. Для гарантированной защиты необходимо введение ряда добавок в состав шихты для выпуска заготовок линз и применение дополнительных оптических покрытий.

Окрашенные рецептурные линзы делают из соответствующих бесцветных линз, которые могут иметь или нет достаточное количество УФ-абсорбера для надежного отрезания соответствующего диапазона излучения. Если нужны линзы со 100 %-й защитой от ультрафиолета, задача контроля и обеспечения такого показателя (до 380–400 нм) возлагается на оптика-консультанта и мастера – сборщика очков. В этом случае введение УФ-абсорберов в поверхностные слои органических очковых линз производится по технологии, аналогичной окрашиванию линз в растворах красителей. Единственное исключение состоит в том, что УФ-защиту не увидеть глазом и для ее проверки нужны специальные приборы – УФ-тестеры. Производители и поставщики оборудования и красителей для окраски органических линз включают в свой ассортимент различные составы для поверхностной обработки, обеспечивающие разные уровни защиты от ультрафиолета и коротковолнового видимого излучения. Провести контроль светопропускания ультрафиолетовой составляющей в условиях стандартной оптической мастерской не представляется возможным.

Следует ли вводить абсорбер ультрафиолетового излучения в бесцветные линзы?

Многие специалисты считают, что введение УФ-абсорбера в бесцветные линзы принесет только пользу, так как защитит глаза пользователей и предупредит ухудшение свойств линз под воздействием УФ-излучения и кислорода воздуха. В некоторых странах, где существует высокий уровень солнечной радиации, например в Австралии, это является обязательным. Как правило, стараются обеспечить отрезание излучения до 400 нм. Таким образом, исключены наиболее опасные и высокоэнергетические составляющие, а оставшегося излучения достаточно для правильного восприятия цвета предметов окружающей действительности. Если границу отрезания сдвинуть в видимую область (до 450 нм), то у линз появится желтый цвет, при увеличении до 500 нм – оранжевый.

Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения?

На оптическом рынке представлено много различных УФ-тестеров, которые позволяют проверить светопропускание очковых линз в ультрафиолетовом диапазоне. Они показывают, какой уровень пропускания у данной линзы в УФ-диапазоне. Однако следует учитывать и то, что оптическая сила корригирующей линзы может оказать влияние на данные измерения. Более точные данные удается получить при помощи сложных приборов – спектрофотометров, которые не только показывают светопропускание при определенной длине волны, но и учитывают при измерении оптическую силу корригирующей линзы.

Защита от ультрафиолетового излучения является важным аспектом, который нужно учитывать при подборе новых очковых линз. Надеемся, что приведенные в данной статье ответы на вопросы об ультрафиолетовом излучении и способах защиты от него помогут вам подобрать очковые линзы, которые дадут возможность сохранить здоровье ваших глаз на долгие годы.

Ольга Щербакова, Веко

Стальную конструкцию защищают от коррозии грунтованием с последующим окрашиванием. А вот алюминиевая в защите не нуждается. Для большей надежности специалисты рекомендуют алюминиевый анодированный профиль, усиленный стальным стержнем.

Используют и дерево. По сравнению с металлом деревянные элементы намного массивнее. Кроме того, они нуждаются в ряде защитных мер: покраске, обработке антисептиками и антипиренами.

Предлагаемый на рынке пластиковый профиль более пригоден для временных сооружений. В наших климатических условиях он быстро приходит в негодность. Чтобы он не погнулся от сильного порыва ветра, лучше выбрать профиль, усиленный металлическим стержнем.

Основную поверхность стен и кровли образуют светопрозрачные конструкции, закрепленные на каркасе. Для них используют стекло, пленку и пластик.
Стекло пропускает 90 % солнечного света и неплохо удерживает тепло: даже в морозную погоду в остекленной теплице температура будет на 4 °С выше наружной. Его основные недостатки — хрупкость и значительный вес. Для теплиц используют стекло толщиной 3 мм. Остекление металлического каркаса герметизируют резиновым уплотнителем, а деревянного — деревянными штапиками.
Акрил (оргстекло) — легкий бесцветный материал, выдерживающий значительные механические нагрузки (что немаловажно при сильных снегопадах), пропускающий ультрафиолетовые лучи и по прозрачности не уступающий стеклу.
Поликарбонат — полимерный материал, который в 250 раз прочнее и в 6 раз легче стекла. Обладает высокой прочностью, тепло- и огнестойкостью, а также низкой теплопроводностью. Он пропускает не намного меньше света, чем прозрачное стекло. Можно зашить поликарбонатом весь каркас и не демонтировать покрытие на зиму в течение многих лет. Этот материал бывает монолитный и сотовый. Из первого изготавливают элементы как плоской, так и криволинейной формы. Такие изделия достаточно жесткие и не требуют несущего каркаса. Однако они относительно дорогие, поэтому плоские кровли покрывают сотовым поликарбонатом. Благодаря своей структуре он имеет высокие теплоизоляционные характеристики. А его малый вес позволяет устанавливать легкие несущие конструкции. В качестве кровельного материала используют листы толщиной не менее 8 мм. Для стен можно выбрать более тонкие листы. Поверхность поликарбоната чувствительна к механическим воздействиям.
Поливинилхлорид (ПВХ) выпускают в виде гофрированных листов. Он отличается высокой механической и ударопрочностью, стойкостью к ультрафиолетовому излучению, долговечностью, гибкостью при температуре от —40 до +65 °С. Прозрачные бесцветные листы ПВХ пропускают 82 % света, но не пропускают ультрафиолет, поэтому для теплиц используют специально обработанные ПВХ-материалы, пропускающие УФ-излучение, необходимое для фотосинтеза.
Полимерная пленка эластична, прозрачна и легка в установке. Она выдерживает морозы до —20 °С, но плохо переносит резкие перепады температуры. Полиэтиленовая пленка пропускает 80 % видимых и ультрафиолетовых лучей, устойчива к щелочам и кислотам, не пропускает воду и пар. Ее недостаток — высокая теплопроницаемость, до 90 %. Под действием ультрафиолета и воздуха пленка стареет, ее светопрозрачность снижается, и к концу сезона материал разрушается. Полотнище пленки склеивают фенолом, формальдегидом, муравьиной кислотой, сваривают паяльником или утюгом. При стыковке ее укладывают так, чтобы край одного полотна перекрывал край другого на 10—15 мм. На место шва накладывают полоску целлофана.
ПВХ-пленка пропускает 90 % видимых и до 80 % УФ-лучей, но почти не пропускает инфракрасные лучи, благодаря чему теплицы в ночное время охлаждаются незначительно. Срок службы этого материала — два-три сезона.
Сополимерная этиленвинилацетатная пленка отличается повышенной прочностью, эластичностью и светостойкостью. Она устойчива к ветру и проколам. Служит до трех лет.
Рулонный стеклопластик изготавливают на основе полиэфирных смол, армированных стекловолокном. Он характеризуется высокой прочностью, надежностью и плохо пропускает тепловую радиацию. Поставляется в рулонах шириной 90 см. Куски соединяют при помощи эфирных смол. Срок службы рулонного стеклопластика - четыре года.

Многие десятки лет пленки исправно служат садоводам-огородникам и крупным тепличным хозяйствам.

Низкая стоимость материала и минимальные затраты времени и средств на монтаж позволяют конкурировать со стеклом, акрилом и поликарбонатом. Разработаны и выпускаются изделия с повышенными функциональными свойствами, обеспеченными специальными добавками.

Материалы покрытий и их свойства

Физико-механические показатели пленки определяются химическим составом и способом получения. Наиболее распространены:

  • Полиэтиленовая
  • Поливинилхлоридная
  • Этиленвинилацетатная

Первая получается экструзией полиэтилена высокого (ПВД) или низкого давления (ПНД), имеет толщину от 30 до 400 мкм, поставляется в рулонах. Типичная ширина – 1500мм, намотка 50–200 м. В соответствии с требованиями ГОСТ 10354-82 прочность на разрыв сельскохозяйственных марок СТ, СИК составляет не менее 14,7 и 12,7 МПа соответственно. Изделия из ПНД превосходят аналоги из ПВД по химической стойкости и на 20–25% по прочности. На рынке представлены продукты, содержащие вторичные полимеры, уменьшающие стоимость, но снижающие механические характеристики.

Эксплуатационные показатели обуславливают специфические компоненты:

  • Стабилизаторы (UF-добавки)
  • Антифоговый слой
  • IR-адсорбенты
  • EVA-добавки

Нестабилизированная пленка на 80% прозрачна для ультрафиолетового излучения, что приводит к ожогам растений и сокращает срок ее службы до 6–12 месяцев в результате разложения. Наличие в составе 2%, 3% UF -стабилизаторов увеличивают долговечность до 18 и 24 мес соответственно (3, 4 сезона). Проницаемость для UF лучей снижается вдвое. Ингридиенты придают лимонный или голубой оттенок продукту.

Рис.1. Работа UF-добавок

Антифоговый слой обладает высокой смачиваемостью, способствует равномерному растеканию, предупреждает падение конденсата на культуры, обеспечивает его стекание с потолка по стенкам в дренажную систему. Результат – стабильная светопроницаемость и защита от гнилостных заболеваний, вызванных переувлажнением.

Рис.2. Гидрофильное действие

Малая толщина требует снижения потерь тепла от инфракрасного излучения почвы в ночное время. Задачу решают введением в состав IR-адсорбентов и EVA (этиленвинилацетатных) компонентов.

Вещества не влияют на проницаемость для солнечного света, служат отражению вторичного коротковолнового излучения грунта. В итоге удается поднять температуру в парнике на 3–5°C, по сравнению с обычным ПВД, не допустить заморозков на грунте. Кроме этого EVA повышает эластичность и морозостойкость.

Рис.3. IR-адсорбенты, EVA-добавки

Разработаны пленки марки ФЕ (светокорректирующие), преобразующие ультрафиолетовые лучи в видимый красный свет с длиной волны 615 нм, интенсифицирующий процессы фотосинтеза и развития саженцев в 2 раза.

Неприятная особенность полимеров – электростатический эффект, проявляющийся осаждением пыли на поверхности, ухудшающий прозрачность. Избежать этого явления позволяют антистатические концентраты, например серии «Atmer» от «Croda Polimer», вводимые в количестве 30–50% в композицию.

Прочность полиэтилена увеличивают армированием и многослойной конструкцией. Последней характерна лучшая теплоизоляция благодаря воздушному зазору, но прозрачность ее ниже, чем однослойной, вследствие преломления лучей на границах сред. Трехслойные продукты оптимальны для большепролетных (до 16 м) теплиц, имеют срок службы 3–5 лет.

Рис. 4. Большепролетная теплица с 3-х

Рис. 5. 3-х слойная армированная пленка от слойной пленкой

Армированные изделия состоят из двух слоев светостабилизированного полиэтилена и внутренней сетки из синтетических нитей диаметром 0,3 мм. Материал выдерживает нагрузку до 70 кг/м 2 , однако проницаемость свету падает примерно на 10%.

Поливинилхлоридные покрытия (ПВХ), изготовленные методом каландрирования, наиболее прочные, эластичные. Продукция высшего сорта марки С по ГОСТ 16272-79 выдерживает на разрыв вдоль волокон не менее 22 МПа, что служит залогом долговечности.

Коэффициент пропускания света достигает 88%, соответствует таковому для полиэтилена, но ПВХ меньше мутнеет со временем, чаще применяется однослойным (толщиной 150–200 мкм), поэтому эффективность его выше. Проницаемость для ультрафиолета составляет около 20%, снижена полезная фотосинтетическая радиация с длиной волн 380–400 нм (ультрафиолет А)

Изготовители используют стабилизирующие, антистатические, IR-добавки, определяющие оптимальный набор показателей. Модифицированный ими поливинилхлорид удерживает до 90% инфракрасного излучения внутри сооружения, обеспечивая лучшую тепловую эффективность .

Паропроницаемость (не менее 15 г/м 2 за 24 часа) благоприятно сказывается на дыхании растений в жаркие дни (у полиэтилена 0,5–30 г/м 2). Морозостойкость до -30°C позволяет переносить заморозки без охрупчивания. Ресурс доходит до 7 сезонов, но цена продукции на 50–70% выше, чем ПВД.

Этиленвинилацетатные (севиленовые) пленки представляют сополимер этилена с винилацетатом, по внешнему виду не отличимые от полиэтилена. Превосходят его по прочности на 20–25%, по прозрачности для лучей видимой части спектра – 92% против 88–90% у первого.

Покрытие гидрофильно, предотвращает капель на листья, вызывающую переохлаждение и образование водяных микролинз – причину местных ожогов. Морозостойкость достигает -80°C. Материал жестче ПВХ, меньше удлиняется и провисает под действием снега, дождя, ветра.

Период эксплуатации изделий, например «EVA-19» от «BERETRA OY», достигает 6–7 лет. Стоимость выше, чем у предыдущих.

Плюсы и минусы

Преимущества пленочных теплиц:

  • Стоимость меньше в 3–5 раз, чем у стеклянных и поликарбонатных
  • Не требуют фундамента
  • Простота и высокая скорость монтажа
  • Компактность при перевозке

К недостаткам относят:

  • Меньшую в 10–30 раз прочность
  • Малую жесткость – склонность к удлинению и провисанию под нагрузкой.
  • Плохую теплоизоляционную способность. Теплопотери пленки толщиной 0,5 мм в 20 раз больше, чем у листа поликарбоната – 6 мм.
  • Нестабильность свойств – помутнение со временем
  • Меньшую долговечность – лучшие продукты уступают поликарбонату в 2 раза
  • Необходимость разборки на зиму
28 мая, 2016
Специализация: профессионал в области строительства и ремонта (полный цикл проведения отделочных работ, как внутренних, так и наружных, от канализации до электрики и финишных работ), монтажа оконных конструкций. Хобби: смотреть столбец "СПЕЦИАЛИЗАЦИЯ И НАВЫКИ"

Вопрос о том, вреден ли линолеум для здоровья, мне задавали довольно часто. Мнение о токсичности и аллергенности этого напольного покрытия широко распространено, и потому, выбирая материалы для отделки помещений, многие относятся к линолеуму с недоверием. Ну, а если в доме есть маленькие дети, то уровень подозрительности нужно умножать минимум на два.

На самом деле значительная часть утверждений о вреде этого материал для здоровья либо сильно преувеличена, либо относится к низкокачественным разновидностям. И все же разобраться, где правда, а где вымысел, просто необходимо. Вот почему я проанализировал основные источники, описывающие вред линолеума, и предлагаю вам ознакомиться со сделанными мною выводами.

Анализ материала

Натуральные и синтетические покрытия

Прежде чем понять, вреден линолеум или нет, нужно заранее оговорить, о каком материале идет речь. Как известно любому, кто хоть немного сталкивался с отделкой полов, линолеумы бывают разные, но в данном аспекте наиболее актуальным будет деление на натуральные и синтетические покрытия.

Сравнивать их удобно с помощью таблицы:

Натуральный линолеум Синтетический линолеум
  • основу материала составляет джутовое полотно – мешковина редкого плетения;
  • джут пропитывается составом на базе льняного масла (linum oleum, отсюда, кстати, и название материала) с добавлением скипидара (тоже преимущественно натурального);
  • в качестве наполнителей используются древесная мука, известковая мука, смолы, пигменты и т.д.
  • основа рулона – вспененный ПВХ, который отвечает за компенсацию, неровностей основания, обеспечивает тепло- и звукоизоляцию;
  • поверх основы может укладываться армирующий слой – стеклоткань, придающая покрытию прочность и эластичность;
  • сверху располагается декоративный слой из поливинилхлорида с нанесенным на него рисунком;
  • поверх рисунка может накладываться истираемый материал — прозрачное покрытие на основе полиуретана или того же ПВХ.

Как видите, в натуральном линолеуме в принципе отсутствуют компоненты, которые могут стать причиной проблем со здоровьем. Покрытие не отличается токсичностью, не выделяет летучих веществ, не содержит практически никаких синтетических компонентов.

Поэтому, если цена (достаточно высокая, надо признать — от 1000 рублей за квадрат и более) вас не смущает, то приобретайте . Если же вы все-таки ограничены в средствах, или вам нужен более влагостойкий и износостойкий материал, то с некоторыми недостатками синтетического линолеума придется мириться.

Потенциальные угрозы от линолеума

Итак, вернемся к нашему тезису о том, что вредность линолеума в основном касается его синтетических разновидностей.

В чем же заключаются потенциальные угрозы?

  1. Поливинилхлорид, который выступает в качестве связующего (замена льняному масло, более дешёвая и более доступная) сам по себе является практически полностью инертным. Если его не принимать в пищу, то его токсичность будет нулевой, так что вред от него – это все-таки миф.

При горении ПВХ действительно выделяет токсичные хлорсодержащие газы.
Но я думаю, что эта ситуация уже выходит за рамки обсуждаемого вопроса: если линолеум горит, то он в любом случае представляет угрозу.
С другой стороны, сам по себе поливинилхлорид воспламеняется очень неохотно, кроме того, там, где это необходимо, инструкция рекомендует укладывать специальный огнестойкий линолеум.

  1. Армирующий материал – стекловолокно – тоже не содержит летучих веществ, способных оказывать отрицательное воздействие на здоровье. Здесь тоже опасаться нечего.

  1. Главным источником опасности являются добавки – стабилизаторы и пластификаторы. Их вводят в состав ПВХ для того, чтобы он был одновременно прочным и эластичным. Некоторые производители используют дешевое сырье с низкой экологичностью, и потому сразу после укладки материал активно выделяет токсичные летучие фенолы. Взрослому человеку пребывание в комнате со «свежим» линолеумом может стоить головной боли, а у младенца даже спровоцировать отравление.

  1. Сюда же стоит отнести и пигменты: если для декорирования использовалась дешевая краска, да еще и на толщине истираемого слоя производитель сэкономил, то через два-три года эксплуатации частички красящих веществ начнут попадать в атмосферу. Особого вреда здоровью они, может, и не нанесут, но вот аллергическую реакцию у человека с предрасположенностью спровоцировать вполне могут.
  2. Еще одна угроза связана с разложением полимеров под воздействием ультрафиолета. Если для создания защитного слоя в полиуретановое покрытие не вводились фильтрующие добавки, то под яркими солнечными лучами (например, в гостиной с большими окнами) покрытие начнет разлагаться, и часть продуктов распада попадет в атмосферу.

  1. Наконец, не стоит укладывать в доме (особенно спальнях и в детских) коммерческие и полукоммерческие разновидности покрытий. К их составу выдвигаются совсем другие требования, так что даже в качественных моделях содержание потенциально опасных компонентов может быть высоким.

Клей как вредный фактор

Еще один фактор, который обуславливает вред от линолеума, и о котором часто забывают – это клей.

Его влияние стоит учитывать по следующим причинам:

  1. Многие сами по себе содержат большое количество летучих токсинов. Конечно, производители линолеума не рекомендуют использовать такие смеси для монтажа, но довольно часто мастера (либо самоучки, либо просто недостаточно ответственные рабочие) работают тем, что есть.

  1. Активные компоненты клея, даже если и не являются токсичными сами по себе, могут вступать в реакцию с полиуретаном, провоцируя и его разложение, и растворение добавок (пластификаторов стабилизаторов, пигментов). Помимо снижения прочности и уменьшения срока службы покрытия результатом становится попадание в воздух не очень полезной «химии».
  2. Особое внимание стоит уделить выбору клея, если линолеум укладывается на теплый пол: при нагреве химические реакции активизируются, и риск получить как минимум неприятный запах, а как максимум – серьезную интоксикацию возрастает в разы.

Кратко резюмируя, я все же отмечу: в отличие от распространенных ситуаций, большинство утверждений о вреде линолеума – это не мифы. Просто касаются они отнюдь не всех изделий представленных на рынке, а только продукции из эконом-сегмента: стараясь снизить себестоимость, производители материала подчас нарушают ряд стандартов.

Что же можно сделать, я расскажу ниже!

Как сделать пол максимально безопасным?

Раз мы разобрались, что значительная часть разговоров о вреде линолеума это не миф, и как минимум имеет под собой рациональное обоснование, то стоит подумать, что можно сделать с этой информацией.

Обезопасить себя вполне реально, и я рекомендую придерживаться таких правил (они довольно просты):

  1. Выбираем только качественные покрытия . У линолеума в обязательном порядке должен быть сертификат соответствия санитарным нормам. Если такого сертификата нет – то даже самая низкая цена не должна становиться аргументом в пользу покупки.

Для детских комнат покупаем только специализированные покрытия, к которым выдвигаются куда более строгие требования.

  1. Перед покупкой принюхиваемся к рулону . Резкий химический запах — признак высокого содержания токсинов. Конечно, «пахнуть» будет любой линолеум, но откровенно некондиционные варианты вы легко определите.

  1. После укладки хорошо проветриваем комнату . Желательно, чтобы между отделкой полов и заселением прошло минимум пять-семь дней: за этот срок как раз снизится концентрация токсинов в воздухе.
  2. И при выполнении монтажа своими руками, и при обращении к профессиональным отделочникам обращаем внимание на используемый клеевой состав . Пусть придется немного переплатить, но лучше взять действительно качественный безопасный клей.

  1. При уборке используем только те моющие средства, которые не разрушают напольное покрытие .
  2. Своевременно выполняем замену линолеума , не дожидаясь его износа из-за полного разрушения истираемого слоя под воздействием пешеходной нагрузки и ультрафиолета.

Заключение

Разобравшись, чем вреден линолеум, и поняв, какие именно факторы представляют опасность, предотвратить неприятные последствия будет довольно просто. В этом вам помогут и приведенные мной рекомендации, основанные на практическом опыте, и видео в этой статье и комментарии, в которых можно будет задать мне вопросы по всем аспектам затронутой темы.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости