Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости

Керамическими называют каменные изделия, получаемые из минерального сырья путем его формования и обжига при высоких температурах, в результате которого сырье необратимо переходит в прочное, водостойкое состояние.

Термин «керамика» происходит от греческого слова «керамейя», которым в Древней Греции называли искусство изготовления изделий из глины. Керамика, пожалуй, является первым искусственным строительным материалом, полученным человечеством. Возраст керамического кирпича как строительного материала превышает 5000 лет.

В современном строительстве керамические изделия применяют почти во всех конструктивных элементах зданий и сооружений.

По назначению керамические материалы и изделия делят на следующие виды:

  • стеновые изделия (кирпич, пустотелые камни и блоки);
  • кровельные изделия (черепица);
  • элементы перекрытий;
  • изделия для облицовки фасадов (лицевой кирпич, малогабаритные и другие плитки, наборные панно, архитектурно-художественные детали);
  • изделия для внутренней облицовки стен (глазурованные плитки и фасонные детали к ним - карнизы, уголки, пояски);
  • заполнители для легких бетонов (керамзит, аглопорит);
  • теплоизоляционные изделия (перлитокерамика, ячеистая керамика, диатомитовые и др.);
  • санитарно-технические изделия (умывальные столы, ванны, унитазы);
  • плитка для пола;
  • дорожный кирпич;
  • кислотоупорные изделия (кирпич, плитки, трубы и фасонные части к ним);
  • огнеупоры;
  • изделия для подземных коммуникаций (канализационные и дренажные трубы).

По структуре керамические материалы подразделяются на пористые , имеющие водопоглощение по массе более 5 %, в среднем 8…20 % (стеновые, кровельные и облицовочные материалы и др.), и плотные , имеющие водопоглощение по массе менее 5 % (плитки для пола, дорожный кирпич, некоторые виды труб и др.).

2. Сырьевые материалы

Сырьевые компоненты для производства керамических материалов подразделяются на пластичные и непластичные . В качестве пластичных компонентов используются глины, в качестве непластичных - добавки, которые вводятся для регулирования различных свойств как формовочной массы, так и готовых изделий.

ГЛИНИСТЫЕ МАТЕРИАЛЫ

Глина - это осадочная горная порода тонкоземлистого строения, способная при смешивании с водой образовывать пластичное тесто, которое после обжига необратимо переходит в камневидное состояние.

Важным свойством глин является их гранулометрический (зерновой) состав. В зависимости от размера частиц в глину входят различные фракции. Глинистые вещества - это частицы чешуйчатой формы, которые имеют размер менее 0,005 мм. Частицы пыли имеют размер от 0,005 до 0,16 мм, песка - от 0,16 до 2 мм, более крупные частицы называются каменистыми включениями. Соотношение между входящими в состав глин фракциями влияет на основные свойства глин (будут рассмотрены ниже) как сырья для производства керамических материалов.

Другая важная характеристика глин - химический состав, куда входят различные глинистые минералы, основным из которых является каолинит Al2O3 2SiO2 2H2O. Помимо этого в глины могут входить родственные ему минералы: галлуазит Al2O3 2SiO2 4H2O, монтмориллонит Al2O3 4SiO2 n H2O и др. В качестве примесей в глине могут находиться: кристаллический кремнезем SiO2, карбонаты кальция CaCО3, соединения железа Fe(OH)2, Fe2O3, оксиды щелочных металлов (Na2O, K2O) и др.

СВОЙСТВА ГЛИНИСТОГО СЫРЬЯ

Глина, замешанная с определенным количеством воды, образует глиняное тесто, обладающее рядом физических, физико-химических и химических свойств, в совокупности называемых керамическими .

Пластичность - свойство глиняного теста деформироваться под нагрузкой без образования трещин и разрывов и сохранять приданную форму после снятия нагрузки.

При смачивании сухой глины молекулы воды втягиваются между чешуйчатыми частицами глинистого вещества, расклинивают их, образуют на поверхности частиц гидратную оболочку и вызывают набухание глин. Гидратные оболочки выполняют роль смазки, облегчающей скольжение частиц глины.

Пластичность зависит от содержания в глине глинистого вещества и от размеров частиц. Чем выше содержание глинистого вещества и мельче частицы, тем более пластична глина. По степени пластичности глины делятся: на высокопластичные, водопотребность которых более 28 %; среднепластичные, имеющие водопотребность 20…28 %, и малопластичные с водопотребностью менее 20 %.

Связанность - усилие, необходимое для разъединения частиц глины. Высокой связанностью обладают глины, содержащие повышенное количество глинистых фракций.

Связующая способность - способность глин в увлажненном состоянии легко перемешиваться с непластичными материалами и при высыхании связывать их в достаточно прочное изделие - сырец.

Воздушная усадка - уменьшение линейных размеров и объема глины при высыхании. В процессе сушки вода испаряется, толщина водных оболочек вокруг глинистых частиц сокращается и отдельные частицы глины сближаются между собой. Воздушная усадка связана с пластичностью глин: чем выше пластичность, тем больше воздушная усадка. Высокопластичные глины имеют воздушную усадку 10…15 %; среднепластичные - 7…10 % и малопластичные - 5…7 %.

Огневая усадка - уменьшение линейных размеров и объема глины при обжиге. В процессе обжига наиболее легкоплавкие соединения глины переходят в расплав, который обволакивает нерасплавившиеся частицы, заполняет промежутки между ними и за счет действия сил поверхностного натяжения жидкой фазы вызывает сближение частиц. Огневая усадка составляет 2…6 %.

Полная усадка - сумма воздушной и огневой усадок.

НЕПЛАСТИЧНЫЕ МАТЕРИАЛЫ

Как уже отмечалось выше, эти материалы вводятся в качестве добавок для регулирования свойств как глинистого сырья, так и готовых изделий.

Отощающие добавки - вводятся для снижения пластичности глин и, как следствие, для уменьшения воздушной усадки. В качестве отощающих добавок используют шамот, дегидратированную глину, золу ТЭС, измельченные гранулированные шлаки, природный песок.

Шамот - предварительно обожженная и измельченная до требуемых размеров (менее 2 мм) глина. Дегидратированная глина - это глина, обожженная при температуре 500…600 °С. При этой температуре из глинистых минералов удаляется химически связанная вода и глина необратимо теряет свойства пластичности.

Пластифицирующие добавки - вводятся для улучшения пластичности глин. Для этих целей используют высокопластичные глины, поверхностноактивные вещества, электролиты.

Выгорающие добавки - вводятся в формовочную массу с целью получения высокопористых изделий: древесные опилки, молотый уголь, торф, лузга и др. Эти добавки одновременно являются и отощающими.

Плавни - вводятся с целью снижения температуры спекания и, как следствие, экономии топливно-энергетических ресурсов. Под спеканием подразумевается появление частичного расплава сырьевой смеси в процессе обжига. В качестве плавней используются полевые шпаты, доломит, магнезит и др.

Для придания повышенной стойкости к внешним воздействиям, водонепроницаемости и определенного декоративного вида поверхность некоторых керамических изделий покрывают глазурью или ангобом.

Стекловидный слой глазури, нанесенный на поверхность керамического материала, закрепляют обжигом. Глазури могут быть прозрачными и непрозрачными различного цвета. Главными сырьевыми компонентами глазури являются кварцевый песок, каолин, полевой шпат, соли щелочных и щелочноземельных металлов, различные оксиды и др.

Ангоб изготовляют из белой или цветной глины и наносят тонким слоем на поверхность еще не обожженного изделия. В отличие от глазури ангоб при обжиге не плавится, поэтому поверхность получается матовой. По своим свойствам ангоб должен быть близок к основному черепку.

3. Общая схема производства керамических изделий

Керамические материалы и изделия, которые выпускает промышленность, имеют разнообразные размеры, форму, физико-механические свойства и различное назначение, но основные этапы технологического процесса их производства примерно одинаковы и складываются из добычи сырьевых материалов, их транспортировки на завод, подготовки сырьевой массы, формования изделия (сырца), сушки и обжига.

ДОБЫЧА И ДОСТАВКА ГЛИНЫ

Глину для производства керамических материалов и изделий добывают в карьерах, обычно расположенных в непосредственной близости от завода. Для добычи используют одно- или многоковшовые экскаваторы, возможно также применение средств гидромеханизации. На завод глину доставляют по рельсовым путям в вагонетках с опрокидывающимся кузовом, автосамосвалами, ленточными транспортерами, вагонетками канатной дороги и другими видами транспорта.

ПОДГОТОВКА СЫРЬЕВОЙ МАССЫ

Добытая в карьере и доставленная на завод глина в естественном состоянии обычно непригодна для формования изделий. Необходимо разрушить природную структуру глины, удалить из нее вредные примеси, измельчить или убрать крупные включения, смешать глину с добавками, а также увлажнить ее, чтобы получить удобоформуемую массу. Для этой цели используют различные механизмы: вальцы, дезинтеграторы, бегуны, глинорезки, глиномялки, мешалки и др. Эти механизмы будут рассмотрены ниже.

Глину обрабатывают полусухим, пластическим и мокрым способами. Выбор того или иного способа зависит от свойств сырьевых материалов, состава керамических масс и способа формования изделий, а также от их размеров и назначения.

При полусухом (сухом) способе сырьевые материалы высушивают, дробят, размалывают и тщательно перемешивают. Сушат глину обычно в сушильных барабанах, дробят и размалывают в бегунах сухого помола, дезинтеграторах или шаровых мельницах, а смешивают в лопастных мешалках. Влажность пресспорошка составляет 8…12 % (4…6 %). Увлажняют пресспорошок водой или паром.

Полусухой способ применяют в производстве строительного кирпича полусухого прессования, плиток для полов, облицовочных плиток и др.

При пластическом способе сырьевые материалы смешивают при естественной влажности или с добавлением воды до получения глиняного теста влажностью 18…25 %. Для измельчения и переработки сырьевых материалов применяют вальцы и бегуны различных типов, а для перемешивания - глиномешалки.

Пластический способ подготовки сырьевой смеси широко применяют в производстве керамического кирпича пластического формования, керамических камней, черепицы, труб и других видов строительной керамики.

При мокром (шликерном) способе сырьевые материалы предварительно измельчают в порошок, а затем тщательно смешивают в присутствии большого количества (более 40 %) воды, получая однородную текучую массу (шликер). Этот способ применяют при производстве фарфоровых и фаянсовых изделий, облицовочных плиток и др.

ФОРМИРОВАНИЕ ИЗДЕЛИЙ

Формуют керамические изделия различными способами: пластическим, полусухим, сухим и мокрым. Выбор способа формования зависит от вида изделий, а также от состава и физико-механических свойств сырья.

Пластический способ формования является наиболее распространенным в производстве обыкновенного и пустотелого кирпича, керамических камней и блоков разного назначения, черепицы, облицовочных плит и других изделий. При этом способе формования подготовленную глиняную массу влажностью 18…25 % направляют в приемный бункер ленточного пресса. При помощи шнека масса

дополнительно перемешивается, уплотняется и выдавливается в виде бруса через выходное отверстие пресса, снабженного сменным мундштуком. Меняя мундштук, можно получать брус различной формы и размеров. Так, например, при формовании кирпича он имеет прямоугольное сечение. Непрерывно выходящий из пресса брус разрезается на отдельные части в соответствии с размерами изготовляемых изделий автоматическим резательным устройством. Современные ленточные прессы снабжены вакуумными камерами, в которых из глиняной массы частично удаляется воздух. Вакуумирование массы повышает ее пластичность и уменьшает формовочную влажность, сокращает длительность сушки сырца и одновременно повышает его прочность.

Полусухой способ формования получил широкое распространение на современных заводах при производстве облицовочных плиток, плиток для полов и других тонкостенных керамических изделий. Этим способом можно изготовлять кирпич и другие изделия из малопластичных глин, что расширяет сырьевую базу производства изделий строительной керамики. Кроме того, существенное преимущество полусухого способа формования по сравнению с пластическим - применение глиняной массы с меньшей влажностью (8…12 %), что значительно сокращает или даже исключает сушку сырца.

При полусухом способе каждое изделие формуют отдельно на высокопроизводительных прессах различной конструкции, обеспечивающих двустороннее прессование в формах глиняного порошка под давлением более 15 МПа.

Сырец полусухого прессования имеет четкую форму, точные размеры, прочные углы и ребра. Прочность его вполне достаточна для последующей погрузки и транспортирования на сушку и обжиг.

Сухой способ формования применяют главным образом для изготовления плотных керамических изделий, например, плиток для полов, дорожного кирпича. Сырьевой массой для прессования изделий служит глиняный порошок влажностью от 4 до 6 %. Отформованный сырец не требует сушки, что экономит топливно-энергетические ресурсы.

Мокрый способ формования применяют для изготовления санитарно-технического фаянса, мозаичной плитки и др. При этом способе глиняную массу влажностью более 40 % заливают в специальные пористые формы.

СУШКА ИЗДЕЛИЙ

Отформованные изделия (сырец) необходимо сушить, чтобы снизить их влажность до 8…10 %. За счет сушки повышается прочность сырца, а также предотвращается растрескивание и деформация его в процессе обжига. Сушка может быть естественной (в сушильных сараях) и искусственной (в специальных сушилках).

Естественная сушка не требует затрат топлива, но продолжается очень долго (10…15 сут) и зависит от температуры и влажности окружающего воздуха. Кроме того, для естественной сушки требуются помещения с большой площадью. В настоящее время на крупных заводах, как правило, производят искусственную сушку сырца в сушилках периодического или непрерывного действия.

Сушилки периодического действия представляют собой отдельные камеры, в которых на стеллажных полках размещают сырец. Подают сырец в камеры на тележках. В камерных сушилках все операции по загрузке, сушке и выгрузке сырца повторяются через определенные промежутки времени.

Сушилки непрерывного действия представляют собой туннели, в которых сырец, уложенный на вагонетках, постепенно проходит различные зоны по температуре и влажности и высушивается.

Сушат сырец в камерных и туннельных сушилках по режиму, выбранному для данного вида изделия, с учетом использованного сырья. В качестве теплоносителя в сушилках применяют дымовые газы обжигательных печей, а также газы, получаемые в специальных топках. Тонкую керамику сушат горячим воздухом из калориферов. Длительность искусственной сушки сырца составляет от одних до трех суток.

ОБЖИГ ИЗДЕЛИЙ

Обжиг является завершающим этапом технологического процесса производства керамических изделий. Процесс обжига можно условно разделить на три периода: прогрев сырца, собственно обжиг и охлаждение обожженных изделий.

В процессе высокотемпературного обжига глина претерпевает сложные физико-химические изменения.

При плавном подъеме температуры до 100…120 °С из глины удаляются остатки свободной влаги и керамическая масса становится непластичной, но если добавить воду, пластические свойства массы восстанавливаются. С повышением температуры до 500…700 °С выгорают органические примеси и из глинистых минералов удаляется химически связанная вода, при этом керамическая масса безвозвратно теряет свойство пластичности. При температуре 700…900 °С происходит разложение безводных глинистых минералов и образуется аморфная смесь глинозема Al2O3 и кремнезема SiO2. При дальнейшем повышении температуры до 1000…1300 °С идут реакции в твердой фазе и образуются искусственные минералы, например силлиманит (Al2O3SiO2) и муллит (3Al2O32SiO2). Одновременно с этим наиболее легкоплавкие соединения керамической массы переходят в расплав, создавая некоторое количество жидкой фазы. Расплав обволакивает нерасплавившиеся частицы, заполняет пустоты между ними и, обладая силой поверхностного натяжения, стягивает частицы. После остывания образуется твердый камнеподобный черепок.

Максимальная температура обжига керамических изделий зависит от состава глин. Обжиг изделий из легкоплавких глин производят при температуре 900…1000 °С, из тугоплавких и огнеупорных - при температуре 1200…1400 °С.

Керамические изделия обжигаются в печах периодического или непрерывного действия с использованием твердого (уголь), жидкого (мазут) или газообразного топлива.

Печи периодического действия представляют из себя камеры, в которые загружаются на стеллажах отформованные и высушенные изделия, после чего начинается плавный подъем температуры, которая доводится до требуемого максимума, затем происходит выдержка изделий при максимальной температуре и плавное ее снижение.

Печи непрерывного действия имеют различную конструкцию. Кольцевые печи имеют обжигательный канал эллипсовидной формы, перекрытый полуциркулярным сводом. Обжигаемые изделия загружаются в канал и остаются неподвижными, а температурные зоны перемещаются относительно обжигаемого материала. Туннельные печи имеют прямолинейный канал, по которому медленно перемещаются вагонетки с уложенными на них изделиями, которые последовательно проходят зоны подогрева, обжига и охлаждения.

В щелевых печах керамические изделия, уложенные в один ряд по высоте, медленно движутся в обжиговом канале по роликовому или иному конвейеру. В таких печах обеспечивается равномерность обжига, сокращается его продолжительность и уменьшается расход топлива.

СВОЙСТВА ОСНОВНЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

Стеновые керамические изделия предназначены для кладки и облицовки несущих и самонесущих стен и других элементов зданий и сооружений, а также для изготовления стеновых панелей и блоков. Их изготовляют в виде правильного параллелепипеда. В зависимости от размеров их подразделяют на виды, указанные в табл. 1. Кирпич изготавливают полнотелым и пустотелым, камень - только пустотелым. Пустоты в изделиях могут быть сквозными или несквозными, располагаться они могут перпендикулярно (вертикальные) или параллельно постели (горизонтальные). По способу формования изделия стеновой керамики подразделяют на изделия, получаемые пластическим формованием и полусухим прессованием. В соответствии с нормативными документами стеновые изделия подразделяют на рядовые и лицевые. Рядовые предназначены для обеспечения эксплуатационных характеристик кладки, лицевые изделия кроме обеспечения эксплуатационных характеристик кладки выполняют функции декоративного материала.

Таблица 1

Номенклатура и номинальные размеры стеновых изделий

Вид изделий Обозначение вида Номинальные размеры, мм Обозначение размера
Длина Ширина Толщина
Кирпич нормального формата (одинарный) КО 250 120 65 1 НФ
Еврокирпич КЕ 250 85 65 0,7 НФ
Кирпич утолщенный КУ 250 120 88 1,4 НФ
Кирпич модульный одинарный КМ 288 138 65 1,3 НФ
Кирпич утолщенный с горизонтальными пустотами КУГ 250 120 88 1,4 НФ
Камень К 250 120 140 2,1 НФ
288 288 88 3,7 НФ
288 138 140 2,9 НФ
288 138 88 1,8 НФ
Камень К 250 250 140 4,5 НФ
250 180 140 3,2 НФ
Камень крупноформатный КК 510 250 219 14,3 НФ
398 250 219 11,2 НФ
380 250 219 10,7 НФ
380 255 188 9,3 НФ
380 250 140 6,8 НФ
380 180 140 4,9 НФ
250 250 188 6,0 НФ
Камень с горизонтальными пустотами КГ 250 200 70 1,8 НФ

По прочности кирпич подразделяют на марки М100, М125, М150, М175, М200, М250, М300; крупноформатные камни - М35, М50, М75, М100, М125, М150, М175, М200, М250, М300; кирпич и камень с горизонтальными пустотами - М25, М35, М50, М75, М100.

По морозостойкости кирпич выпускается четырех марок: F15, F25, F35, F50.

По средней плотности изделия подразделяют на классы 0,8; 1,0; 1,2; 1,4; 2,0, которые должны соответствовать значениям, приведенным в табл. 2.

Таблица 2

Классы стеновых изделий по средней плотности

В зависимости от теплопроводности и класса по средней плотности стеновые изделия подразделяют на группы, приведенные в табл. 3.

Таблица 3

Группы изделий по теплотехническим характеристикам

К кровельным керамическим материалам относят черепицу. Она должна обладать высокой долговечностью, водонепроницаемостью, устойчивостью к действию различных атмосферных факторов и эстетичностью, иметь однородную структуру на изломе и предел прочности на излом в сухом состоянии не менее 7 МПа, массу 1 м 2 кровли не более 45 кг, а также обладать морозостойкостью не менее 25 циклов попеременного замораживания и оттаивания, водопоглощением не более 10 % по массе.

Фасадные керамические плитки применяют для облицовки фасадов и цоколей зданий, наружных поверхностей железобетонных стеновых панелей, подземных переходов.

Основными показателями, характеризующими качество фасадных плиток, являются морозостойкость, водопоглощение, точность геометрических размеров и внешний вид. Морозостойкость рядовых плиток толщиной более 9 мм должна быть не менее 35 циклов, толщиной менее 7 мм - не менее 40 циклов при водопоглощении до 12 %. Для плиток специального назначения морозостойкость должна превышать 50 циклов, а водопоглощение допускается не более 5 %.

Плитки для полов могут быть неглазурованными и глазурованными, одно- и многоцветными, с гладкой, шероховатой (тисненой) или рифленой лицевой поверхностью. По форме плитки бывают квадратные, прямоугольные, треугольные, четырех-, пяти-, шести и восьмигранные, фигурные. Водопоглощение их должно быть не более 3,8…5 %, истираемость не более 0,07…0,06 г/см 2 .

Плитки для внутренней облицовки предназначены для облицовки внутренних поверхностей стен и перегородок. Они отличаются по форме, фактуре и виду материала, образующего фактурный слой (50 типов). Керамические плитки должны иметь водопоглощение не более 16 %, предел прочности при изгибе не менее 15 МПа, а глазурное покрытие должно обладать термостойкостью не менее 150 °С и твердостью не менее 5 по шкале Мооса.

Керамика как поликристаллическое твердое тело состоит в общем случае из трех основных фаз:

  • кристаллическая, состоящая из зерен,
  • стекловидная (аморфная) – в виде прослоек, располагающихся между зернами,
  • газовая – в виде пор между зернами, окруженными прослойками аморфной фазы.

Фарфор
Фаянс
Тонкокаменные изделия
Майолика
Терракота
Гончарная керамика
Шамотная керамика

Основное различие керамических материалов заключается в различном составе и соотношении между собой трех фаз, определяющих свойства керамических изделий. Структура, т.е. строение керамического тела, зависит от состава сырья и технологии данного материала. По дисперсности (размерам) элементов структуры керамические материалы бывают тонкокерамическими и грубокерамическими. Если керамика состоит из мелкодисперсных зерен, ее излом однороден и частицы малоразличимы, то такой материал относится к тонкокерамическим (прежде всего фарфор, фаянс, майолика и др.). Если же в структуре керамики наблюдаются крупные зерна, сама структура неоднородна, то перед нами грубокерамическое изделие (шамотные изделия, гончарная керамика, терракота). Гончарные изделия и терракоту, изготовленные из качественных глин без примеси крупных частиц, можно причислить также к тонкокерамическим изделиям, что говорит об условности такого деления.

Основные виды керамических материалов: фарфор, фаянс, тонкокаменные изделия, майолика, терракота, гончарная керамика, шамотная керамика.

Фарфор – вид керамики белого цвета с плотным раковистым изломом, высшее достижение керамической технологии. Для изготовления фарфора используют огнеупорные беложгущиеся глины и каолины, кварц и полевые шпаты (соотношение пластичных и отощающих материалов 1:1). Различают мягкий и твердый фарфор. Отличительными признаками фарфора являются: белизна, просвечиваемость, механическая прочность, твердость, термическая и химическая стойкость. Область применения: от изготовления посуды и изделий технического назначения до создания уникальных произведений искусства.

Фаянс (от названия итальянского города Фаэнца) – вид керамики белого цвета с мелкопористым изломом. Для изготовления фаянса используют огнеупорные беложгущиеся глины, кварц и различные добавки. В отличие от фарфора имеет непрозрачный пористый черепок, температура утильного обжига превышает температуру политого. Различают мягкий и твердый фаянс. Область применения: изготовление посуды, изделий технического назначения, декоративных изделий, строительной керамики.

Тонкокаменные изделия – вид керамики, характеризующийся белым или цветным спекшимся черепком, с однородным раковистым изломом. Для изготовления тонкокаменных изделий используют огнеупорные и тугоплавкие глины, химический состав которых колеблется в довольно широких пределах.Отличают тонкокаменные изделия низкотемпературного и высокотемпературного спекания. В зависимости от применяемого сырья, степени спекания и цвета черепка, особенностей технологии тонкокаменные изделия носят различные названия: полуфарфор, низкотемпературный фарфор, «каменный товар» и др. Тонкокаменные изделия отличаются низким водопоглощением (0,5…5,0%). Область их применения: изготовление посуды, декоративной и интерьерной керамики.

Майолика (от названия острова Мальорка) – вид керамики с пористым, естественно окрашенным черепком от светло-кремового до красного (кирпичного) цвета, покрытые прозрачной или глухой (непрозрачной) глазурью. Для изготовления майолики используют легкоплавкие глины в чистом виде или с вводом отощающих и флюсующих добавок. Часто майоликовые изделия покрывают слоем белой глины, ангобом, скрывающим натуральный цвет черепка. Низкая температура глазурного обжига майолики (960–1050? С) позволяет использовать для декорирования широкую палитру цветных глазурей и эмалей. Область применения: изготовление посуды, облицовочной плитки, декоративной керамики.

Терракота (terra (итал.) – земля, cotta – обожженная) – вид керамики, неглазурованные керамические изделия с пористым черепком. Для изготовления терракоты используют качественные малоусадочные глины, имеющие равномерную окраску и относительно высокую температуру плавления. Иногда терракоту покрывают ангобом. Область применения: изготовление скульптуры, изразцов, плитки и т.п.

Гончарная керамика – керамические изделия с естественным цветом обожженной глины, относительно высокой пористостью, мелкозернистые, обычно неглазурованные. Для изготовления этого вида керамики используют местные легкоплавкие гончарные глины без применения каких-либо других компонентов за исключением небольших добавок кварцевого песка. Иногда изделия покрывают слоем ангоба или глазури. Область применения: изготовление посуды, украшений, сувениров.

Шамотная керамика – вид грубокерамических изделий, имеющий пористый, грубозернистый, чаще светлый черепок. Шамот представляет собой обожженную перемолотую глину. Для связывания зерен шамота в шамотных изделиях используют глины, замешивая их до образования пластичной массы. Из шамотированных масс изготавливают скульптуру малых форм, напольные вазы, кирпичи и некоторые другие разновидности архитектурной керамики.

Все вышеперечисленные керамические материалы , как бы ни различались они по составу сырья и, следовательно, по конечному химическому составу и свойствам изделий, объединяет технология, определяющая последовательность операций.

Принципиальная технологическая схема получения керамики

  1. Заготовка сырья (глина, шамот, песок и т.п.)
  2. Подготовка формовочной массы
  3. Формование
  4. Сушка
  5. Обжиг

Керамика (керамические материалы) - поликристаллические материалы, получаемые спеканием глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений. Люди начали использовать керамические материалы с 5-го тысячелетия до н. э.

Техническая керамика включает искусственно синтезированные керамические материалы различного состава (химического и фазового). Основными компонентами технической керамики являются оксиды, бескислородные соединения металлов, а также глины.

Следует отметить, что любой керамический материал является многофазной системой. В керамике могут присутствовать кристаллическая, стекловидная и газовая фазы.

Кристаллическая фаза представляет собой определенные химические соединения или твердые растворы. Эта фаза составляет основу керамики и определяет значения ее механической прочности, термостойкости и других основных свойств.

Стекловидная фаза находится в керамике в виде прослоек стекла, связывающих кристаллическую фазу. Обычно керамика содержит 1…10 % стекловидной фазы, которая снижает механическую прочность и ухудшает тепловые показатели материала. Однако стеклообразующие компоненты (глинистые вещества) облегчают технологию изготовления изделий.

Газовая фаза представляет собой газы, находящиеся в порах керамики. По этой фазе керамику подразделяют на плотную, без открытых пор и пористую. Наличие даже закрытых пор нежелательно, так как из-за этого снижается механическая прочность материала.

Техническая керамика характеризуется многообразием составов и свойств. Поскольку различные виды керамики отличаются сырьем, составом, структурой и свойствами, то объединяющим признаком этих материалов можно считать технологию их получения (составление шихты, формование и обжиг).

Керамические материалы характеризуются общими для них свойствами (высокая температура плавления, большие значения твердости и модуля упругости, химическая инертность). При этом данные материалы отличаются большим диапазоном электрических и тепловых свойств (от сверхпроводников до диэлектриков, от теплоизоляторов до высокотеплоотводящих материалов), обладают специфическими свойствами (эмиссионными, оптическими, ядерными, каталитическими). Из керамики изготавливают украшения, строительные материалы (в том числе облицовочную плитку и кирпич), посуду (фарфоровую и глиняную), футеровку печей, режущий инструмент, детали химического и металлургического оборудования, уплотнители насосов, работающих в условиях абразивного изнашивания, детали двигателей (внутреннего сгорания и газотурбинных) и ракет и др.

Большинство керамических материалов являются кислородсодержащими соединениями. К ним относятся силикатные соединения (на основе глин и других силикатов) и из чистых тугоплавких оксидов металлов (оксидов бериллия, магния, алюминия, циркония, гафния и проч.).

К бескислородным соединениям принадлежат керамические материалы, состоящие из карбидов, нитридов, боридов, силицидов и др.

Различают керамические материалы пористые и плотные (каменная керамика); грубые (с неоднородным строением) и тонкие (с мелкокристаллическим строением).

Керамика на основе оксида алюминия А1 2 О 3 (корундовая) обладает высокой прочностью, которая сохраняется при высоких температурах. Корундовая керамика химически стойка и является отличным диэлектриком. Изделия из этого материала применяют во многих областях техники (пластины резцов, используемые при больших скоростях резания, калибры, фильеры для протяжки стальной проволоки, сопла, детали высокотемпературных печей, подшипники печных конвейеров, детали насосов, свечи зажигания в двигателях внутреннего сгорания). Керамику на основе оксида алюминия с плотной структурой используют в качестве вакуумной, а пористую - как термоизоляционный материал. В корундовых тиглях плавят различные металлы, оксиды, шлаки.

Особенностями оксида циркония (ZrO 2) являются слабокислотная или инертная природа и низкий коэффициент теплопроводности. Рекомендуемые температуры применения керамики из ZrO 2 2 000…2 200 °С; она используется для изготовления огнеупорных тиглей для плавки металлов и сплавов, как тепловая изоляция печей, аппаратов и реакторов, в качестве покрытия на металлах для защиты последних от действия температур.

Керамика на основе оксидов магния и кальция обладает стойкостью к действию основных шлаков различных металлов, в том числе и щелочных. Но термическая стойкость таких материалов низкая. Оксид магния при высоких температурах летуч, а оксид кальция способен к гидратации даже на воздухе (их применяют для изготовления тиглей). Кроме того, MgO используют для футеровки печей, пирометрической аппаратуры и т. д.

Керамика на основе оксида бериллия отличается высокой теплопроводностью, что сообщает этому материалу высокую термостойкость, но его прочностные свойства невысокие. Оксид бериллия обладает способностью рассеивать ионизирующее излучение высоких энергий, имеет высокий коэффициент замедления тепловых нейтронов и применяется для изготовления тиглей для плавки некоторых чистых металлов, а также в качестве вакуумной керамики в ядерных реакторах.

Следует отметить, что разработаны и используются керамические материалы на основе оксидов титана, тория, урана и др.

Бескислородная керамика создана на основе соединений, которые не содержат кислорода. К ним относятся соединения элементов с углеродом (МеС) - карбиды, с азотом (МеN) - нитриды, с бором (МеВ) - бориды, с кремнием (МеSi) - силициды и с серой (МеS) - сульфиды. Эти соединения отличаются высокой огнеупорностью (2 500…3 500 °С), твердостью (иногда как у алмаза) и износостойкостью (по отношению к агрессивным средам). При этом материалы обладают высокой хрупкостью. Сопротивление окислению при высоких температурах (окалиностойкость) карбидов и боридов составляет 900…1 000 °С, у нитридов - несколько ниже. Силициды могут выдерживать температуру 1 300…1 700 °С (на поверхности образуется пленка кремнезема).

Карбиды кремния, хрома, титана, вольфрама и другие получили широкое применение. Из карбида кремния изготавливают огнеупоры, конструкционные материалы, абразивные материалы, электротехнические материалы и др. Из карбида титана изготавливают детали насосов химической промышленности, лопатки газовых турбин, электроды, твердые сплавы и др. Карбид вольфрама используется, в основном, для производства твердых сплавов для резцов, фрез и другого инструмента.

Нитриды - соединения азота с более электроположительными элементами, главным образом, металлами. Тугоплавкими соединениями с высокой твердостью, хорошими износостойкостью и химической стойкостью являются нитриды алюминия, бора, кремния, титана.

Нитрид алюминия обладает еще и хорошими электроизоляционными свойствами. Его используют в качестве электроизоляционного материала, огнеупора (тигли, футеровка печей), из него изготавливают усы (для армирования композиционных материалов). Механические свойства сверхтвердых модификаций нитрида бора близки к свойствам алмаза. Они используются для изготовления инструментальных материалов и сверхтвердых материалов типа «боразон», «гексанит», «эльбор». Нитрид кремния используется в качестве инструментального материала, конструкционного материала, материала трения, огнеупора. Нитрид титана используется для нанесения покрытий на поверхности изложниц и как декоративное покрытие золотистого цвета. Нитриды молибдена и ниобия при определенных температурах являются сверхпроводниками.

Бориды обладают металлическими свойствами. Они износостойки, тверды, стойки к окислению и электропроводность боридов очень высокая. В технике используются дибориды тугоплавких металлов (TiВ 2 , ZrВ 2 и др.). Их легируют кремнием или дисилицидами, что делает их устойчивыми до температуры плавления. Диборид циркония стоек в расплавах алюминия, меди, чугуна, стали и др. Его используют для изготовления термопар, работающих при температуре свыше 2 000 °С в агрессивных средах, а также труб, емкостей, тиглей. Благодаря высокому уровню механических свойств, жаропрочности и жаростойкости бориды широко используются как конструкционные материалы для узлов и деталей газовых турбин, реактивных двигателей, для сопел распыления металлов, чехлов термопар и др.

Силициды отличаются от карбидов и боридов полупроводниковыми свойствами, окалиностойкостью, стойкостью к действию кислот и щелочей. Эти материалы можно применять при температуре 1 300…1 700 °С, при температуре 1 000 °С они не взаимодействуют с расплавленным свинцом, оловом и натрием. Дисилицид молибдена (МоSi 2) наиболее широко используется в качестве стабильного электронагревателя в печах при температуре 1 700 °С в течение нескольких тысяч часов. Из спеченного МоSi 2 изготовляют лопатки газовых турбин, сопловые вкладыши двигателей. В радио- и электротехнике силициды используют как высокотемпературные полупроводниковые материалы.

Сульфиды (в зависимости от соотношения серы и металла в соединении) являются обычными полупроводниками, узкозонными полупроводниками или обладают свойствами металлов. Эти материалы используются в электротехнике и электронике. Сульфидам присуща высокая химическая стойкость по отношению к расплавам металлов и солей при высоких температурах. Сульфиды применяются в качестве огнеупоров для тиглей и других изделий в прецизионной металлургии, а в химической промышленности их используют как катализаторы.

Следует отметить, что разрабатываются новые составы керамических материалов, совершенствуются технологии получения изделий из этих материалов и область их применения постоянно расширяется.

Российская Федерация

Министерство образования и науки Челябинской области

Профессиональное училище №130

По дисциплине: «Материаловедение»

Тема: Керамические материалы

Выполнил: учащийся гр.28 Белобородов А.

Проверил: Преподаватель Долин А.М.

Южно-Уральск 2008г.

Введение

1. Общие сведения о керамических материалах

2. Сырье для производства керамических материалов и изделий

2.1 Глинистые материалы

2.2 Отощающие материалы

Заключение

Список литературы


Введение

В современном мире в строительстве очень широко применяются керамические материалы и изделия. Это обусловлено большой прочностью, значительной долговечностью, декоративностью многих видов керамики, а также распространенностью в природе сырьевых материалов.

Целью данной работы является рассмотрение и изучение керамических материалов. В соответствии с поставленной целью можно выделить и задачи работы: изучить общие сведение о керамических материалах: понятие, виды, свойства керамических материалов и изделий; сырье для производства керамических материалов и изделий: глинистые материалы, отощающие материалы.

Керамические изделия обладают различны ми свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига - газовой средой, температурой и длительностью. Материал (т.е. тело), из которого состоят керамические изделия, в технологии керамики именуют керамическим черепком.

1. Общие сведения о керамических материалах

Керамическими называют материалы и изделия, изготовляемые формованием и обжигом глин. «Керамос»- на древнегреческом языке означало гончарную глину, а также изделия из обожженной глины. В глубокой древности из глин путем обжига получали посуду, а позднее (около 5000 лет назад) стали изготовлять кирпич, а затем черепицу.

Большая прочность, значительная долговечность, декоративность многих видов керамики, а также распространенность в природе сырьевых материалов обусловили широкое применение керамических материалов и изделий в строительстве. В долговечности керамических материалов можно убедиться на примере Московского Кремля, стены которого сложены почти 500 лет назад.

Среди сырьевых порошкообразных материалов - глина, которая имеет преимущественное применение при производстве строительной керамики. Она большей частью содержит примеси, влияющие на ее цвет и термические свойства. Наименьшее количество примесей содержит глина с высоким содержанием минерала каолинита и потому называемая каолином, имеющая практически белый цвет. Кроме каолинитовых глин разных цветов и оттенков применяют монтмориллонитовые, гидрослюдистые.

Кроме глины к применяемым порошкообразным материалам, являющимися главными компонентами керамических изделий, относятся также некоторые другие минеральные вещества природного происхождения - кварциты, магнезиты, хромистые железняки.

Для технической керамики (чаще именуемой специальной) используют искусственно получаемые специальной очисткой порошки в виде чистых оксидов, например оксиды алюминия, магния, кальция, диоксиды циркония, тория и др. Они позволяют получать изделия с высокими температурами плавления (до 2500-3000В°С и выше), что имеет важное значение в реактивной технике, радиотехнической керамике. Материалы высшей огнеупорности изготовляют на основе карбидов, нитридов, боридов, силицидов, сульфидов и других соединений металлов как без глинистых сырьевых веществ. Некоторые из них имеют температуры плавления до 3500 - 4000В°С, особенно из группы карбидов.

Большой практический интерес имеют керметы, состоящие обычно из металлической и керамической частей с соответствующими свойствами. Получили признание огнеупоры переменного состава. У этих материалов одна поверхность представлена чистым тугоплавким металлом, например, вольфрамом, другая - огнеупорным керамическим материалом, например оксидом бериллия. Между поверхностями в поперечном сечении состав постепенно изменяется, что повышает стойкость материала к тепловому удару.

Для строительной керамики, как отмечено выше, вполне пригодна глина, которая является распространенным в природе, дешевым и хорошо изученным сырьем. В сочетании с некоторыми добавочными материалами из нее получают в керамической промышленности разнообразные изделия и в широком ассортименте. Их классифицируют по ряду признаков. По конструкционному назначению выделяют изделия стеновые, фасадные, для пола, отделочные, для перекрытий, кровельные изделия, санитарно-технические изделия, дорожные материалы и изделия, для подземных коммуникаций, огнеупорные изделия, теплоизоляционные материалы и изделия, химически стойкую керамику.

По структурному признаку все изделия разделяют на две группы: пористые и плотные. Пористые керамические изделия впитывают более 5% по весу воды (кирпич обыкновенный, черепица, дренажные трубы). В среднем водопоглощение пористых изделий составляет 8 - 20% по весу или 15 - 35% по объему. Плотными принимают изделия с водопоглощением меньше 5% по массе, и они практически водонепроницаемые, например плитки для пола, канализационные трубы, кислотоупорный кирпич и плитки, дорожный кирпич, санитарный фарфор. Чаще всего оно составляет 2 - 4% по весу или 4 - 8% по объему. Абсолютно плотных керамических изделий не имеется, так как испаряющаяся вода затворения, вводимая в глиняное тесто, всегда оставляет некоторое количество микро- и макропор.

По назначению в строительстве различают следующие группы керамических материалов и изделий:

стеновые материалы (кирпич глиняный обыкновенный, пустотелый и легкий, камни керамические пустотелые);

кровельные материалы и материалы для перекрытий (черепица, керамические пустотелые изделия);

облицовочные материалы для наружной и внутренней облицовки (кирпич и камни лицевые, плиты керамические фасадные, малогабаритные плитки);

материалы для полов (плитки);

материалы специального назначения (дорожные, санитарно-строительные, химически стойкие, материалы для подземных коммуникаций, в частности трубы, теплоизоляционные, огнеупорные и др.);

заполнители для легких бетонов (керамзит, аглопорит).

Наибольшего развития достигли стеновые материалы, причем наряду с общим увеличением объема производства особое внимание обращено на увеличение выпуска эффективных изделий (пустотелый кирпич и камни, керамические блоки и панели и т.д.). Предусмотрено также расширить производство фасадной керамики, особенно для индустриальной отделки зданий, глазурованных плиток для внутренней облицовки, плиток для полов, канализационных и дренажных труб, санитарно-строительных изделий, искусственных пористых заполнителей для бетонов.

По температуре плавления керамические изделия и исходные глины разделяются на легкоплавкие (с температурой плавления ниже 1350В°С), тугоплавкие (с температурой плавления 1350-1580В°С) и огнеупорные (свыше 1580В°С). Выше отмечались также примеры изделий и сырья высшей огнеупорности (с температурой плавления в интервале 2000-4000Х), используемых для технических (специальных) целей.

Отличительная особенность всех керамических изделий и материалов состоит в их сравнительно высокой прочности, но малой деформативности. Хрупкость чаще всего относится к отрицательным свойствам строительной керамики. Она обладает высокой химической стойкостью и долговечностью, а форма и размеры изделий из керамики обычно соответствуют установленным стандартам или техническим условиям.

На российском рынке в настоящее время представлены жидкие керамические теплоизоляционные материалы, которые находят своего потребителя, благодаря широкой области применения и простоте использования при небольших затратах труда. Так как предлагаемые материалы в основном производятся за рубежом, они имеют высокую стоимость, что ограничивает возможность их массового использования в строительстве, энергетике и ЖКХ и т.д. Тогда как отечественные аналоги зачастую оставляют желать лучшего, и своим «качеством» вызывают негатив и предвзятость у конечного пользователя к жидким керамическим теплоизоляционным материалам.


2. Сырье для производства керамических материалов и изделий

Сырьевые материалы, используемые для изготовления керамических изделий, можно подразделить на пластичные глинистые (каолины и глины) и отощающие (шамот, кварц, шлаки, выгорающие добавки). Для понижения температуры спекания в глину иногда добавляют плавни. Каолин и глины объединяют общим названием - глинистые материалы.

керамический строительство кровельный облицовочный

2.1 Глинистые материалы

Каолины. Каолины образовались в природе из полевых шпатов и других алюмосиликатов, не загрязненных окислами железа. Они состоят преимущественно из минерала каолинита. После обжига присущий им белый или почти белый цвет сохраняется.

Глины. Глинами называют осадочные породы, представляющие собой тонкоземлистые минеральные массы, способные независимо от их минералогического и химического состава образовывать с водой пластичное тесто, которое после обжига превращается в водостойкое и прочное камневидное тело.

Состоят глины из тесной смеси различных минералов, среди которых наиболее распространенными являются каолинитовые, монтмориллонитовые и гидрослюдистые. Представителями каолинитовых минералов являются каолинит и галлуазит. В монтмориллонитовую группу входят монтмориллонит, бейделлит и их железистые разновидности. Гидрослюды - в основном продукт разной степени гидратации слюд.

Наряду с этими минералами в глинах встречаются кварц, полевой шпат, серный колчедан, гидраты окислов железа и алюминия, карбонаты кальция и магния, соединения титана, ванадия. Такие примеси влияют как на технологию керамических изделий, так и на их свойства. Например, тонко распределенный углекислый кальций и окислы железа понижают огнеупорность глин. Если в глине имеются крупные зерна и песчинки углекислого кальция, то при обжиге из них образуются более или менее крупные включения извести, которая на воздухе гидратируется с увеличением объема (дутики), что вызывает образование трещин или разрушение изделий. Соединения ванадия служат причиной появления зеленоватых налетов (выцветов) на кирпиче, что портит внешний вид фасадов.

Глины часто содержат также органические примеси. По отношению к действию высоких температур различают глины трех групп: огнеупорные (огнеупорность выше 1580"С), тугоплавкие (1350 - 1580"С) и легкоплавкие (ниже 1350"С). К огнеупорным относятся большей частью каолинитовые глины, содержащие мало механических примесей. Такие глины используют для производства фарфора, фаянса и огнеупорных изделий. Тугоплавкие глины содержат окислы железа, кварцевый песок и другие примеси в значительно большем количестве, чем огнеупорные, и применяются для производства тугоплавкого, облицовочного и лицевого кирпича, плиток для полов и канализационных труб. Легкоплавкие глины наиболее разнообразны по минералогическому составу, содержат значительное количество примесей (кварцевого песка, окислов железа, известняка, органических веществ). Используют их в кирпичном и черепичном производствах, в производстве легких заполнителей и т. д.

В производстве искусственных обжиговых материалов можно применять также некоторые другие осадочные породы: диатомиты, трепелы и их уплотненные разновидности - опоки, а также сланцы в чистом виде и с примесью глин или порообразующих добавок.


2.2 Отощающие материалы

Для уменьшения усадки при сушке и обжиге, а также для предотвращения деформаций и трещин в жирные пластичные глины вводят искусственные или природные отощающие материалы.

В качестве искусственных отощающих материалов используют дегидратированную глину и шамот, а также отходы производства (котельные и другие шлаки, золы, очажные остатки и т.д.). Дегидратированную глину получают нагреванием обычной глины примерно до 600-700"С (при этой температуре она теряет свойство пластичности) и применяют в качестве отощителя при производстве грубой строительной керамики. Шамот изготовляют путем обжига огнеупорных или тугоплавких глин при температурах 1000 - 1400"С. Шамот является основным сырьем в производстве огнеупорных шамотных изделий.

К природным отощающим материалам относятся такие вещества, которые неспособны в смеси с водой образовывать пластичную массу, например кварцевые пески, пылевидный кварц.

Порообразующие материалы. В производстве изделий грубой строительной керамики, например кирпича, для отощения массы, а также для получения изделий, обладающих повышенной пористостью и, следовательно, пониженной теплопроводностью, в сырьевую массу вводят порообразующие добавки. Обычно применяют органические добавки, называемые выгорающими, - древесные опилки, уголь, торфяную пыль, и др. Они выгорают при обжиге изделий и образуют поры.

Плавни. Введение в глину плавней способствует понижению температуры ее спекания. К числу плавней относятся полевые шпаты, железная руда, доломит, магнезит, тальк и др.


Заключение

В заключение сказанного можно подвести итоги, сформулировать выводы:

Керамическими называют материалы и изделия, получаемые из порошкообразных веществ различными способами и подвергаемые в технологический период обязательной термической обработке при высоких температурах для упрочнения и получения камневидного состояния. Такая обработка носит название обжига;

Кроме глины к применяемым порошкообразным материалам, являющимися главными компонентами керамических изделий, относятся также некоторые другие минеральные вещества природного происхождения - кварциты, магнезиты, хромистые железняки;

По структурному признаку все изделия разделяют на две группы: пористые и плотные;

Сырьевые материалы, используемые для изготовления керамических изделий, можно подразделить на пластичные глинистые (каолины и глины) и отощающие (шамот, кварц, шлаки, выгорающие добавки). Для понижения температуры спекания в глину иногда добавляют плавни. Каолин и глины объединяют общим названием - глинистые материалы.


Список литературы

1. Краткий химический справочник / В.А. Рабинович, З.Я. Хазов, - Л.: Химия, 1978. - 356с.

2. Материаловедение: лекции / Мальцев И. М. - Ниж. Новгород: НГТУ, 1995 - 103с.

3. Новые материалы / под науч. ред. Ю.С. Карабасова, - М.: Мисис, 2002 - 738с.

4. Основы материаловедения / Сажин В.Б. - М.: Теис, 2005. - 155с.

) и их смесей с минеральными добавками, изготовляемые под воздействием высокой температуры с последующим охлаждением.

В узком смысле слово керамика обозначает глину , прошедшую обжиг . Однако современное использование этого термина расширяет его значение до включения всех неорганических неметаллических материалов. Керамические материалы могут иметь прозрачную или частично прозрачную структуру, могут происходить из стекла (см. ситаллы). Самая ранняя керамика использовалась как посуда из глины или из смесей её с другими материалами. В настоящее время керамика применяется как индустриальный материал (машиностроение, приборостроение, авиационной промышленности и др.), как строительный материал, художественный, как материал широко используемый в медицине, науке. В 20-ом столетии новые керамические материалы были созданы для использования в полупроводниковой индустрии и др. областях

Слово «керамический» происходит также от индоевропейского Керри , означая высокую температуру. Откуда «Керамический» может использоваться как прилагательное, описывающее материал, продукт или процесс; или как только существительное во множественном числе «керамика».

История

Исторически керамические изделия были твёрдыми, пористыми и хрупкими. Изучение керамики приводит к разработке все новых и новых методов для решения данных проблем, уделяя особое внимание сильным сторонам материалов, а также и необычному их использованию.

Керамика известна с глубокой древности и является, возможно, первым созданным человеком материалом. Время появления керамики относят к эпохе мезолит и неолита. Различными видами керамики являются терракота , майолика , фаянс , каменная масса, фарфор , ситаллы .

Исходя из происхождения слова керамика понимаются такие изделия, для которых глина (при случае каолин), смешанная с полевым шпатом, кварцем или известью, служит главным сырьем. Эти исходные вещества перемешиваются и перерабатываются в массу, которая либо от руки, либо на поворотном круге формуется и затем обжигается.

Отдельные виды керамики формировались постепенно по мере совершенствования производственных процессов, различаясь в зависимости от образовательных свойств черепка и калильного жара. Большинство из них удерживается и по сей день. Древнейший вид - это обыкновенный горшечный товар с землистым, окрашенным и пористым черепком. Это типичная бытовая керамика или изделия, которые разными способами облагораживались - штампованием и гравировкой (например, Bucchero nero), тонким облицовочным слоем (греческая керамика и римские Terra - sigillata), цветной глазурью («Гафнеркерамика» Ренессанса). Первоначально керамика формовалась от руки. Изобретение гончарного круга в третьем тысячелетии до нашей эры, было большим прогрессом, что позволило изготовлять посуду с более тонкими стенками.

К концу XVI века керамика переходит в Европу майолика . Обладая пористым черепком из содержащей железо и известь, но при этом белой фаянсовой массы или изразцовой глины, она покрыта двумя глазурями: непрозрачной, с содержанием олова, и прозрачной блестящей свинцовой глазурью. Майолика родом из заальпийских стран называется фаянсом. Декор писали на майолике по сырой глазури, прежде чем обжечь изделие при температуре порядка 1000 °C. Краски для росписи брались того же химического состава, что и глазурь , однако их существенной частью были окислы металлов, которые выдерживали большую температуру (так называемые огнеупорные краски - синяя, зеленая, желтая и фиолетовая). Начиная с XVIII века, стали применять так называемым муфельные краски, которые наносились на уже обожженную глазурь. С их помощью особенно на фарфоре, достигают высоких результатов.

В XVI веке в Германии распространяется производство каменной посуды. Белый (например, в Зигбурге) или окрашенный (например, в Ререне) весьма плотный черепок состоит из глины, смешанной с полевым шпатом и другими веществами. Обжигаясь при температуре 1200-1280 °С, каменная посуда очень тверда и практически непориста. В Голландии, по образцу Китайской керамики, ее стали производить красной, и ту же особенность обнаруживает каменная посуда Бётгера.

Каменная посуда также изготовлялась Веджвудом в Англии. Тонкий фаянс как особый сорт керамики рождается в Англии в первой половине XVIII века с белым пористым черепком, покрытым белой же глазурью. Он в зависимости от крепости черепка делится на мягкий тонкий фаянс с высоким содержанием извести, средний - с более низким ее содержанием и твердый - совсем без извести. Этот последний по составу и крепости черепка часто напоминает каменную посуду или фарфор.

В строительстве широко применяется цемент - один из видов керамики, сырьем для которого служат глина и известняк, смешанный с водой.

История появления керамики на Руси

Керамика в России

‎Керамика известна с глубокой древности и является, возможно, первым созданным человеком материалом. Россия в области керамики достойно занимает ведущее место в мире, несмотря на то, что в международной литературе вопрос о возникновении фарфорового и керамического производства часто умаляется. На примере появления чёрной керамики археологически доказано, что уже в 3-ем тысячелетии до н. э. чёрная лощённая керамика использовалась в ритуальных и обрядовых целях. Значительный ущерб развитию керамики в России нанесло только одно монголо-татарское нашествие, которое много уничтожило достижений русских гончаров IX-XII веков. Например, исчезли двуручные корчаги-амфоры, вертикальные светильники, более простым стал орнамент, искусство перегородчатой эмали, глазурь (самая простая - жёлтая, уцелела только в Новгороде).

Лишь в XV веке прдолжалось развитие керамики на Руси. В России и в настоящее время, особенно в сельской местности, каждый керамический сосуд незаменим. Пища в керамических горшках самая ароматная и долго хранящаяся.

Изготовление керамической посуды на гончарном круге представляло и представляет особый интерес. Так называемые квасники (сосуды для кислых щей, браги, пива, дрожжевых или фруктовых квасов) появились в Москве в ХIX веке.

Прозрачная керамика

Исторически керамические материалы непрозрачны из-за особенностей их структуры. Однако спекание частиц нанометровых размеров позволило создать прозрачные керамические материалы, обладающие свойствами (диапазоном рабочих длин волн излучения, дисперсией, показателем преломления), лежащими за пределами стандартного диапазона значений для оптических стёкол .

См. также

  • Обварная керамика

Ссылки


Wikimedia Foundation . 2010 .

  • Керамин-Минск
  • Керар

Смотреть что такое "Керамические материалы" в других словарях:

    Керамические материалы - неметаллические материалы из тугоплавких неорганических соединений, получаемые спеканием, плазмо химическим и другими методами. К. м. обладают высокой температуроустойчивостью, жаропрочностью, твёрдостью, электроизоляционными и другими ценными… … Энциклопедия техники

    керамические материалы Энциклопедия «Авиация»

    керамические материалы - керамические материалы — неметаллические материалы из тугоплавких неорганических соединений, получаемые спеканием, плазмо химическим и другими методами. К. м. обладают высокой температуроустойчивостью, жаропрочностью, твёрдостью,… … Энциклопедия «Авиация»

    Прозрачные керамические материалы - Основная статья: Оптические материалы Волновод на базе прозрачной керамики Прозрачные керамические материалы материалы, прозрачные для электромагнитных … Википедия

    Абразивные керамические материалы - (абразивы) – вещества повы­шенной твердости, применяемые в массивном или измельченном со­стоянии для механической обработки (шлифования, резания, истирания, заточки, полирования и т.д.) других материалов. Естественные аб­разивные материалы –… …

    Сверхтвердые керамические материалы - – композиционные керамичес­кие материалы, получаемые введением различных легирующих добавок и наполнителей в исходный нитрид бора. Структура таких материалов образо­вана прочно связанными мельчайшими кристаллитами и, следовательно, они являются… … Энциклопедия терминов, определений и пояснений строительных материалов

    Керамические плитки и плиты - – тонкостенные изделия, изготовленные из керамической массы и/или других неорганических материалов. Примечание 1. Керамические плитки и плиты применяют главным образом для настилки полов и облицовки стен. Как правило, их формуют при… … Энциклопедия терминов, определений и пояснений строительных материалов

    Материалы строительные керамические - – получают в процессе технологической переработки минерального сырья (в основном глинистого), способного при затворении водой образовывать пластичное тесто, которое в высушенном состоянии обладает небольшой прочностью, а после обжига приобретает… … Энциклопедия терминов, определений и пояснений строительных материалов

    Керамические изделия для облицовки - – выпускают глазурованными и неглазурованными. К ним относится лицевой кирпич и ковровые облицовочные плитки. Кирпич и камни лицевые керамические имеют марки по прочности 75,100,125,150; водопоглощение 6…14 %. [Словарь строительных материалов и… … Энциклопедия терминов, определений и пояснений строительных материалов

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости