Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости

Работа практически любой электронной схемы требует наличия одного или нескольких источников постоянного напряжения, причем в подавляющем большинстве случаев используется стабилизированное напряжение. В стабилизированных источниках питания применяются либо линейные, либо импульсные стабилизаторы. Каждый тип преобразователей имеет свои достоинства и, соответственно, свою нишу в схемах электропитания. К несомненным достоинствам импульсных стабилизаторов относятся более высокие значения коэффициента полезного действия, возможность получения высоких значений выходного тока и высокая эффективность при большой разнице между значениями входного и выходного напряжений.

Принцип работы понижающего импульсного стабилизатора

На рисунке 1 представлена упрощенная схема силовой части ИПСН.

Рис. 1.

Полевой транзистор VT осуществляет высокочастотную коммутацию тока. В импульсных стабилизаторах транзистор работает в ключевом режиме, то есть может находиться в одном из двух стабильных состояний: полной проводимости и отсечки. Соответственно, работа ИПСН состоит из двух сменяющих друг друга фаз — фазы накачки энергии (когда транзистор VT открыт) и фазы разряда (когда транзистор закрыт). Работа ИПСН иллюстрируется рисунком 2.

Рис. 2. Принцип работы ИПСН: а) фаза накачки; б) фаза разряда; в) временные диаграммы

Фаза накачки энергии продолжается на протяжении интервала времени Т И. В это время ключ замкнут и проводит ток I VT . Далее ток проходит через дроссель L к нагрузке R, шунтированной выходным конденсатором C OUT . В первой части фазы конденсатор отдает ток I C в нагрузку, а во второй половине — отбирает часть тока I L от нагрузки. Величина тока I L непрерывно увеличивается, и происходит накопление энергии в дросселе L, а во второй части фазы — и на конденсаторе C OUT . Напряжение на диоде V D равно U IN (за вычетом падения напряжения на открытом транзисторе), и диод на протяжении этой фазы закрыт — ток через него не протекает. Ток I R , протекающий через нагрузку R, постоянен (разность I L — I C), соответственно, напряжение U OUT на выходе также постоянно.

Фаза разряда протекает в течение времени Т П: ключ разомкнут и ток через него не протекает. Известно, что ток, протекающий через дроссель, не может измениться мгновенно. Ток IL, постоянно уменьшаясь, протекает через нагрузку и замыкается через диод V D . В первой части этой фазы конденсатор C OUT продолжает накапливать энергию, отбирая часть тока I L от нагрузки. Во второй половине фазы разряда конденсатор тоже начинает отдавать ток в нагрузку. На протяжении этой фазы ток I R , протекающий через нагрузку, также постоянен. Следовательно, напряжение на выходе также стабильно.

Основные параметры

В первую очередь отметим, что по функциональному исполнению различают ИПСН с регулируемым и с фиксированным выходным напряжением. Типичные схемы включения обоих типов ИПСН представлены на рисунке 3. Различие между ними заключается в том, что в первом случае резисторный делитель, определяющий значение выходного напряжения, находится вне интегральной схемы, а во втором — внутри. Соответственно, в первом случае значение выходного напряжения задается пользователем, а во втором — устанавливается при изготовлении микросхемы.

Рис. 3. Типичная схема включения ИПСН: а) с регулируемым и б) с фиксированным выходным напряжением

К важнейшим параметрам ИПСН относят:

  • Диапазон допустимых значений входного напряжения U IN_MIN …U IN_MAX .
  • Максимальное значение выходного тока (тока в нагрузке) I OUT_MAX .
  • Номинальное значение выходного напряжения U OUT (для ИПСН с фиксированным значением выходного напряжения) или диапазон значений выходного напряжения U OUT_MIN …U OUT_MAX (для ИПСН с регулируемым значением выходного напряжения). Часто в справочных материалах указывается, что максимальное значение выходного напряжения U OUT_MAX равно максимальному значению входного напряжения U IN_MAX . В действительности это не совсем так. В любом случае выходное напряжение меньше входного, как минимум, на величину падения напряжения на ключевом транзисторе U DROP . При значении выходного тока, равного, например, 3А, величина U DROP составит 0,1…1,0В (в зависимости от выбранной микросхемы ИПСН). Примерное равенство U OUT_MAX и U IN_MAX возможно только при очень малых значениях тока нагрузки. Отметим также, что и сам процесс стабилизации выходного напряжения предполагает потерю нескольких процентов входного напряжения. Декларируемое равенство U OUT_MAX и U IN_MAX следует понимать только в том смысле, что других причин снижения U OUT_MAX , кроме тех, что указаны выше в конкретном изделии, не существует (в частности, нет явных ограничений на максимальную величину коэффициента заполнения D). В качестве U OUT_MIN обычно указывают значение напряжения обратной связи U FB . В реальности U OUT_MIN всегда должно быть на несколько процентов выше (из тех же соображений стабилизации).
  • Точность установления выходного напряжения. Задается в процентах. Имеет смысл только в случае ИПСН с фиксированным значением выходного напряжения, поскольку в этом случае резисторы делителя напряжения находятся внутри микросхемы, а их точность является параметром, контролируемым при изготовлении. В случае ИПСН с регулируемым значением выходного напряжения параметр теряет смысл, поскольку точность резисторов делителя выбирается пользователем. В этом случае можно говорить только о величине колебаний выходного напряжения относительно некоторого среднего значения (точность отработки сигнала обратной связи). Напомним, что в любом случае этот параметр для импульсных стабилизаторов напряжения в 3…5 раз хуже по сравнению с линейными стабилизаторами.
  • Падение напряжения на открытом транзисторе R DS_ON . Как уже отмечалось, с этим параметром связано неизбежное уменьшение напряжения на выходе по отношению к входному напряжению. Но важнее другое- чем выше значение сопротивления открытого канала, тем большая часть энергии рассеивается в виде тепла. Для современных микросхем ИПСН хорошим значением являются величины до 300мОм. Более высокие значения характерны для микросхем, разработанных не менее чем пять лет назад. Заметим также, что значение R DS_ON не является константой, а зависит от величины выходного тока I OUT .
  • Длительность рабочего цикла Т и частота коммутации F SW . Длительность рабочего цикла Т определяется как сумма интервалов Т И (длительность импульса) и Т П (длительность паузы). Соответственно, частота F SW — величина, обратная длительности рабочего цикла. Для некоторой части ИПСН частота коммутации — величина постоянная, определяемая внутренними элементами интегральной схемы. Для другой части ИПСН частота коммутации задается внешними элементами (как правило, внешней RC-цепью), в этом случае определяется диапазон допустимых частот F SW_MIN …F SW_MAX . Более высокая частота коммутации позволяет применять дроссели с меньшим значением индуктивности, что положительно сказывается и на габаритах изделия, и на его цене. В большинстве ИСПН используется ШИМ-регулирование, то есть величина Т постоянна, а в процессе стабилизации регулируется величина Т И. Существенно реже используется частотно-импульсная модуляция (ЧИМ-регулирование). В этом случае величина Т И постоянна, а стабилизация осуществляется за счет изменения длительности паузы Т П. Таким образом величины Т и, соответственно, F SW становятся переменными. В справочных материалах в этом случае, как правило, задается частота, соответствующая скважности, равной 2. Отметим, что следует отличать диапазон частот F SW_MIN …F SW_MAX регулируемой частоты от «ворот» допуска на фиксированную частоту, поскольку величина допуска часто указывается в справочных материалах производителя.
  • Коэффициент заполнения D, который равен процентно
    му отношению Т И к Т. Часто в справочных материалах указывают «до 100%». Очевидно, что это преувеличение, поскольку если ключевой транзистор постоянно открыт, то отсутствует процесс стабилизации. В большинстве моделей, выпущенных на рынок примерно до 2005-го года, из-за ряда технологических ограничений значение этого коэффициента было ограничено сверху величиной 90%. В современных моделях ИПСН большая часть этих ограничений преодолена, но фразу «до 100%» не следует понимать дословно.
  • Коэффициент полезного действия (или эффективность). Как известно, для линейных стабилизаторов (принципиально понижающих) это процентное отношение выходного напряжения ко входному, поскольку величины входного и выходного тока почти равны. Для импульсных стабилизаторов входной и выходной токи могут существенно отличаться, поэтому в качестве КПД берется процентное отношение выходной мощности ко входной. Строго говоря, для одной и той же микросхемы ИПСН значение этого коэффициента может существенно отличаться в зависимости от соотношения значений входного и выходного напряжения, величины тока в нагрузке и частоты коммутации. Для большинства ИПСН максимум КПД достигается при значении тока в нагрузке порядка 20…30% от максимально допустимого значения, поэтому численное значение не очень информативно. Целесообразнее пользоваться графиками зависимости, которые приводятся в справочных материалах производителя. На рисунке4 в качестве примера приведены графики эффективности для стабилизатора . Очевидно, что использование высоковольтного стабилизатора при невысоких реальных значениях входного напряжения не является хорошим решением, поскольку значение КПД существенно падает при приближении тока в нагрузке к максимальному значению. Вторая группа графиков иллюстрирует более предпочтительный режим, поскольку значение эффективности слабо зависит от колебаний выходного тока. Критерием правильного выбора преобразователя является даже не столько численное значение КПД, сколько именно плавность графика функции от тока в нагрузке (отсутствие «завала» в области больших токов).

Рис. 4.

Приведенным перечнем весь список параметров ИПСН не исчерпывается. С менее значимыми параметрами можно ознакомиться в литературе .

Специальные функции
импульсных стабилизаторов напряжения

В большинстве случаев ИПСН имеют ряд дополнительных функций, расширяющих возможности их практического применения. Наиболее часто встречаются следующие:

  • Вход отключения нагрузки «On/Off» или «Shutdown» позволяет разомкнуть ключевой транзистор и, таким образом, отключить напряжение от нагрузки. Как правило, используется для дистанционного управления группой стабилизаторов, реализуя определенный алгоритм подачи и отключения отдельных напряжений в системе электропитания. Кроме того, может применяться как вход для аварийного выключения питания при нештатной ситуации.
  • Выход нормального состояния «Power Good»- обобщающий выходной сигнал, подтверждающий, что ИПСН находится в нормальном рабочем состоянии. Активный уровень сигнала формируется после завершения переходных процессов от подачи входного напряжения и, как правило, используется или в качестве признака исправности ИПСН, или для запуска следующих ИСПН в последовательных системах электропитания. Причины, по которым этот сигнал может быть сброшен: падение входного напряжения ниже определенного уровня, выход выходного напряжения за определенные рамки, отключение нагрузки по сигналу Shutdown, превышение максимального значения тока в нагрузке (в частности, факт короткого замыкания), температурное отключение нагрузки и некоторые другие. Факторы, которые учитываются при формировании этого сигнала, зависят от конкретной модели ИПСН.
  • Вывод внешней синхронизации «Sync» обеспечивает возможность синхронизации внутреннего генератора с внешним синхросигналом. Используется для организации совместной синхронизации нескольких стабилизаторов в сложных системах электропитания. Отметим, что частота внешнего синхросигнала не обязательно должна совпадать с собственной частотой FSW, однако, она должна лежать в допустимых пределах, оговоренных в материалах производителя.
  • Функция плавного старта «Soft Start» обеспечивает относительно медленное нарастание выходного напряжения при подаче напряжения на вход ИПСН или при включении по заднему фронту сигнала Shutdown. Данная функция позволяет снизить броски тока в нагрузке при включении микросхемы. Параметры работы схемы плавного старта чаще всего являются фиксированными и определяются внутренними компонентами стабилизатора. В некоторых моделях ИПСН присутствует специальный вывод Soft Start. В этом случае параметры запуска определяются номиналами внешних элементов (резистор, конденсатор, RC-цепь), подключенных к данному выводу.
  • Температурная защита предназначена для предотвращения выхода из строя микросхемы в случае перегрева кристалла. Повышение температуры кристалла (независимо от причины) выше определенного уровня вызывает срабатывание защитного механизма — снижение тока в нагрузке или ее полное отключение. Это предотвращает дальнейшее повышение температуры кристалла и повреждение микросхемы. Возврат схемы в режим стабилизации напряжения возможен только после остывания микросхемы. Отметим, что температурная защита реализована в подавляющем большинстве современных микросхем ИПСН, однако отдельная индикация именно этого состояния не предусмотрена. Инженеру предстоит самому догадаться, что причиной отключения нагрузки является именно срабатывание температурной защиты.
  • Защита по току заключается либо в ограничении величины тока, протекающего через нагрузку, либо в отключении нагрузки. Защита срабатывает, если сопротивление нагрузки оказывается слишком малым (например, имеет место короткое замыкание), а ток превышает определенное пороговое значение, что может привести к выходу микросхемы из строя. Как и в предыдущем случае, диагностика этого состояния является заботой инженера.

Последнее замечание, касающееся параметров и функций ИПСН. На рисунках 1 и 2 присутствует разрядный диод V D . В довольно старых стабилизаторах этот диод реализован именно как внешний кремниевый. Недостатком такого схемотехнического решения было высокое падение напряжения (примерно 0,6 В) на диоде в открытом состоянии. В более поздних схемах использовался диод Шоттки, падение напряжения на котором составляло примерно 0,3 В. В разработках последних пяти лет эти решения используются только для высоковольтных преобразователей. В большинстве современных изделий разрядный диод выполняется в виде внутреннего полевого транзистора, работающего в противофазе с ключевым транзистором. В этом случае падение напряжения определяется сопротивлением открытого канала и при небольших токах нагрузки дает дополнительный выигрыш. Стабилизаторы, использующие это схемотехническое решение, называются синхронными. Обратим внимание, что возможность работы от внешнего синхросигнала и термин «синхронный» не связаны никаким образом.


с малым входным напряжением

Учитывая тот факт, что в номенклатуре STMicroelectronics присутствует примерно 70 типов ИПСН с встроенным ключевым транзистором, имеет смысл систематизировать все многообразие. Если в качестве критерия взять такой параметр, как максимальное значение входного напряжения, то можно выделить четыре группы:

1. ИПСН с малым входным напряжением (6 В и менее);

2. ИПСН с входным напряжением 10…28 В;

3. ИПСН с входным напряжением 36…38 В;

4. ИПСН с высоким входным напряжением (46 В и выше).

Параметры стабилизаторов первой группы приведены в таблице 1.

Таблица 1. ИПСН с малым входным напряжением

Наименование Вых. ток, A Входное
напряжение, В
Выходное
напряжение, В
КПД, % Частота коммутации, кГц Функции и флаги
I OUT V IN V OUT h F SW R DSON On/Off Sync.
Pin
Soft
Start
Pow Good
Макс Мин Макс Мин Макс Макс Тип
L6925D 0,8 2,7 5,5 0,6 5,5 95 600 240 + + + +
L6926 0,8 2,0 5,5 0,6 5,5 95 600 240 + + + +
L6928 0,8 2,0 5,5 0,6 5,5 95 1450 240 + + + +
PM8903A 3,0 2,8 6,0 0,6 6,0 96 1100 35 + + + +
ST1S06A 1,5 2,7 6,0 0,8 5,0 92 1500 150 + +
ST1S09 2,0 4,5 5,5 0,8 5,0 95 1500 100 * + +
ST1S12 0,7 2,5 5,5 0,6 5,0 92 1700 250 + +
ST1S15 0,5 2,3 5,5 Фикс. 1,82 и 2,8 В 90 6000 350 + +
ST1S30 3,0 2,7 6,0 0,8 5,0 85 1500 100 * + +
ST1S31 3,0 2,8 5,5 0,8 5,5 95 1500 60 + +
ST1S32 4,0 2,8 5,5 0,8 5,5 95 1500 60 + +
* – функция присутствует не для всех исполнений.

Еще в 2005 году линейка стабилизаторов этого типа была неполной. Она ограничивалась микросхемами . Эти микросхемы обладали хорошими характеристиками: высокой точностью и КПД, отсутствием ограничений на значение коэффициента заполнения, возможностью регулировки частоты при работе от внешнего синхросигнала, приемлемым значением R DSON . Все это делает данные изделия востребованными и в настоящее время. Существенный недостаток — невысокие значения максимального выходного тока. Стабилизаторы на токи нагрузки от 1 А и выше в линейке низковольтных ИПСН компании STMicroelectronics отсутствовали. В дальнейшем этот пробел был ликвидирован: сначала появились стабилизаторы на 1,5 и 2 А ( и ), а в последние годы — на 3 и 4 А ( , и ). Кроме повышения выходного тока, увеличилась частота коммутации, снизилось значение сопротивления открытого канала, что положительно сказалось на потребительских свойствах конечных изделий. Отметим также появление микросхем ИПСН с фиксированным выходным напряжением ( и ) — в линейке STMicroelectronics таких изделий не очень много. Последняя новинка — со значением RDSON в 35 мОм — это один из лучших показателей в отрасли, что в сочетании с широкими функциональными возможностями обещает этому изделию хорошие перспективы.

Основная область применения изделий данного типа — мобильные устройства с батарейным питанием. Широкий диапазон входного напряжения обеспечивает устойчивую работу аппаратуры при различных уровнях заряда аккумуляторной батареи, а высокий КПД минимизирует преобразование входной энергии в тепло. Последнее обстоятельство определяет преимущества импульсных стабилизаторов по сравнению с линейными именно в этой области пользовательских приложений.

В целом, данная группа у компании STMicroelectronics развивается достаточно динамично — примерно половина всей линейки появилась на рынке в последние 3-4 года.

Импульсные понижающие стабилизаторы
с входным напряжением 10…28 В

Параметры преобразователей этой группы приведены в таблице 2.

Таблица 2. ИПСН со входным напряжением 10…28 В

Наименование Вых. ток, A Входное
напряжение, В
Выходное
напряжение, В
КПД, % Частота коммутации, кГц Сопротивление открытого канала, мОм Функции и флаги
I OUT V IN V OUT h F SW R DSON On/Off Sync.
Pin
Soft
Start
Pow Good
Макс Мин Макс Мин Макс Макс Тип
L5980 0,7 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5981 1,0 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5983 1,5 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5985 2,0 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5986 2,5 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5987 3,0 2,9 18,0 0,6 18,0 93 250…1000 140 + + +
L5988D 4,0 2,9 18,0 0,6 18,0 95 400…1000 120 + + +
L5989D 4,0 2,9 18,0 0,6 18,0 95 400…1000 120 + + +
L7980 2,0 4,5 28,0 0,6 28,0 93 250…1000 160 + + +
L7981 3,0 4,5 28,0 0,6 28,0 93 250…1000 160 + + +
ST1CC40 2,0 3,0 18,0 0,1 18,0 н.д. 850 95 + +
ST1S03 1,5 2,7 16,0 0,8 12,0 79 1500 280 +
ST1S10 3,0 2,7 18,0 0,8 16,0 95 900 120 + + +
ST1S40 3,0 4,0 18,0 0,8 18,0 95 850 95 + +
ST1S41 4,0 4,0 18,0 0,8 18,0 95 850 95 + +
ST763AC 0,5 3,3 11,0 Фикс. 3,3 90 200 1000 + +

Восемь лет назад данная группа была представлена только микросхемами , и с входным напряжением до 11 В. Диапазон от 16 до 28 В оставался не заполненным. Из всех перечисленных модификаций в настоящее время в линейке присутствует только , но параметры этого ИПСН современным требованиям соответствуют слабо. Можно считать, что за это время номенклатура рассматриваемой группы обновлена полностью.

В настоящее время база данной группы — микросхемы . Данная линейка рассчитана на весь диапазон токов нагрузки от 0,7 до 4 А, обеспечивает полный комплект специальных функций, частота коммутации регулируется в достаточно широких пределах, отсутствуют ограничения на значение коэффициента заполнения, значения КПД и сопротивления открытого канала отвечают современным требованиям. Существенных минусов в данной серии два. Во-первых, отсутствует встроенный разрядный диод (кроме микросхем с суффиксом D). Точность регулирования выходного напряжения достаточно высока (2%), но наличие трех и более внешних элементов в цепи компенсации обратной связи нельзя отнести к достоинствам. Микросхемы и отличаются от серии L598x только иным диапазоном входных напряжений, но схемотехника, а, следовательно, достоинства и недостатки аналогичны семейству L598x. В качестве примера на рисунке 5 представлена типовая схема включения трехамперной микросхемы . Присутствует и разрядный диод D, и элементы цепи компенсации R4, C4 и C5. Входы F SW и SYNCH остаются свободными, следовательно, преобразователь работает от внутреннего генератора с частотой F SW , заданной по умолчанию.


Источники питания
[Содержание номера ] [Содержание года ] [Архив ] [Статьи ]
Простой импульсный стабилизатор

С.Засухин, г.Санкт-Петербург

Преимущества импульсных стабилизаторов постоянного напряжения известны: высокий КПД и устойчивая работоспособность при большой разнице значений входного и выходного напряжений. В "Радио" уже публиковались описания таких стабилизаторов, но они либо не имеют защиты от замыкания в нагрузке , либо очень сложны . Предлагаемый стабилизатор с широтно-импульсным управлением (рис.1) по принципу действия близок к стабилизатору, описанному в , но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или превышении тока, потребляемого нагрузкой.

Рис.1

При подаче питания на вход устройства ток, текущий через резистор R2, открывает ключевой элемент, образованный транзисторами VT2, VT3, в результате чего в цепи транзистор VT3 - дроссель L1 - нагрузка - резистор R6 возникает ток. Происходит зарядка конденсатора C4 и накопление энергии дросселем L1. Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 В и открывается стабилитрон VD4. Это приводит к открыванию транзисторов VT5, VT1 и закрыванию ключевого элемента, а благодаря наличию диода VD1, дроссель L1 отдает накопленную энергию нагрузке.

По мере уменьшения тока через дроссель и разрядки конденсатора C4 напряжение на нагрузке уменьшится, что приводит к закрыванию транзисторов VT5, VT1 и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор CЗ, снижающий частоту колебательного процесса, повышает КПД стабилизатора.

Более подробно о работе такого стабилизатора рассказано в .

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R6, открыванию транзистора VT4 и закрыванию ключевого элемента. Далее процесс протекает аналогично описанному выше. Диоды VD2 и VD3 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока, потребляемого нагрузкой.

Нагрузочная характеристика стабилизатора приведена на рис.2. На участке а-б устройство работает как стабилизатор напряжения, на участке б-в - как стабилизатор тока. На участке в-г выходной ток с уменьшением сопротивления нагрузки хотя и растет, но даже в режиме короткого замыкания (точка г) он безопасен для деталей стабилизатора.

Рис.2

Интересно отметить: во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки.

Стабилизатор выполнен на печатной плате из одностороннего фольгированного стеклотекстолита (рис.3). Резисторы - МЛТ и С5-16Т (R6). Оксидный конденсатор C4 составлен из двух конденсаторов К50-6 емкостью по 500 мкф каждый; конденсаторы C2 и CЗ - К10-7В. Диод КД226А (VD1) заменим на КД213; VD2 и VD3 могут быть любыми импульсными. Транзисторы VT1, VT4, VT5 - любые маломощные соответствующих структур с Uкэ max > Uвх . Транзистор VT2 (с некоторым ухудшением КПД) может быть любым из серии КТ814, VT3 - любым мощным структуры N-P-N в пластмассовом корпусе, который следует установить на теплоотводе размерами 40х25 мм из алюминиевого сплава.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМ3. Магнитопровод собран с зазором толщиной 0,5 мм из немагнитного материала.

Безошибочно смонтированный стабилизатор налаживания не требует.

Стабилизатор несложно перестроить на другое выходное напряжение и ток, потребляемый нагрузкой. Необходимое выходное напряжение устанавливают выбором соответствующего стабилитрона VD4, а максимальный ток нагрузки - пропорциональным изменением сопротивления резистора R6 или подачей на базу транзистора VT4 небольшого тока от отдельного параметрического стабилитрона через переменный резистор.

Участок б-в на нагрузочной характеристике позволяет использовать устройство для зарядки аккумуляторных батарей стабильным током. При этом, правда, КПД стабилизатора падает, и если предполагается длительная работа на этом участке нагрузочной характеристики, то транзистор VT3 придется установить на более эффективный теплоотвод. Иначе допустимый выходной ток придется уменьшить.

Для снижения уровня пульсации выходного напряжения целесообразно использовать LC-фильтр, аналогичный примененному в .

Мною смакетирован аналогичный стабилизатор на напряжение 18 В при токе нагрузки, регулируемом от 1 до 5 А. Такое устройство можно использовать, например, для зарядки автомобильных аккумуляторных батарей, если предусмотреть защиту от их переполюсовки. Его транзисторы VT1 и VT2 - КТ914А, VT3 - КТ935А, VT4 и VT5 - КТ645А; диод VD1 - КД213; VD4 - два последовательно включенных стабилитрона Д814А. Конденсатор C4 - два оксидных емкостью по 500 мкф на номинальное напряжение 25 В. Дроссель L1 - 12 витков жгута из шести проводов ПЭВ-2 0,57 в магнитопроводе Б36 из феррита 1500НМ3 с зазором 0,5 мм. Резистор R6 - проволочный сопротивлением 0,05 Ом. Транзистор VT3 и диод VD1 установлены на общем теплоотводе с поверхностью 300 см² через слюдяные прокладки.

Для питания такого зарядного устройства использовался трансформатор ТН54 с соединенными последовательно обмотками. Мостовой выпрямитель на диодах Д242 с фильтрующим конденсатором емкостью 10 000 мкф на номинальное напряжение 50 В.

Приставка к блоку питания

Это преобразователь задумывался, как приставка, позволяющая расширить диапазон напряжений лабораторного блока питания, рассчитанного на выходное напряжение 12 вольт и ток 5 ампер. Принципиальная схема преобразователя показана на рисунке 1.

Основой устройства является микросхема однотактного широтно-импульсного контроллера UC3843N, включенная по типовой схеме. Непосредственно эта схема бала заимствована у немецкого радиолюбителя Георга Тиф (Tief G. Dreifacher Step-Up-Wandler. Stabile Spennunger fϋr den FieldDay). Данные на русском языке на эту микросхему можно посмотреть в справочнике «Микросхемы для импульсных источников питания и их применение» издательства «Додэка» на странице 103. Схема не сложная и при исправных деталях и правильном монтаже, начинает работать сразу же. Регулировка выходного напряжения преобразователя осуществляется при помощи подстроечного резистора R8. Но при желании, его можно поменять на резистор переменный. Величину выходного напряжения можно изменять от 15 до 40 вольт, при номиналах резисторов R8, R9, R10, указанных на схеме. Данный преобразователь был испытан с паяльником, рассчитанным на 24 вольта и мощностью 40 Вт.
И так:

Напряжение выхода ……………… 24 В
Ток нагрузки составил ……....... 1,68 А
Мощность нагрузки ………………. 40,488 Вт
Напряжение входа ………………... 10,2 В
Общий ток потребления ………. 4,65 А
Общая мощность …………………... 47,43 Вт
Получившийся КПД ………………... 85%
При этом температура активных компонентов схемы была в районе 50 градусов.

При этом ключевой транзистор и диод с барьером Шоттки имеют небольшие радиаторы. В качестве ключевого транзистора применен транзистор IRFZ34, имеющий сопротивление открытого канала 0,044 Ом, а в качестве диода применен один из диодов диодной сборки S20C40C, выпаянной из блока питания старого компьютера. На печатной плате предусмотрена коммутация диодов при помощи перемычки. Можно применить и другие диоды с барьером Шоттки с прямым током не менее чем в два раза превышающим ток нагрузки. Дроссель намотан на желтом с белым кольце из распыленного железа, так же взятым из блока питания ПК. Про такие сердечники можете почитать в брошюре Джима Кокса. Скачать ее можно из Сети. Вообще советую скачать эту статью и полностью прочитать. Много полезного материала по дросселям.

Магнитная проницаемость такого кольца равна 75, а его размеры – D = 26,9 mm; d = 14,5 mm; h = 11,1 mm. Обмотка дросселя имеет 24 витка любого обмоточного провода диаметром 1,5 мм.

Все детали стабилизатора установлены на печатной плате, причем с одной стороны установлены все «высокие» детали, а с другой – все, так сказать, «низкорослые». Рисунок печатной платы показан на рисунке 2.

Первое включение собранного устройства можно производить без ключевого транзистора и убедиться в работоспособности ШИМ-контроллера. При этом на выводе 8 микросхемы должно быть напряжение 5 вольт, это напряжение внутреннего источника опорного напряжения ИОН. Оно должно быть стабильны при изменении напряжения питания микросхемы. Стабильной должна быть и частота, и амплитуда пилообразного напряжения на выходе 4 DA1. Убедившись в работоспособности контроллера можно впаять и мощный транзистор. Все должно работать.

Не забывайте, что ток нагрузи стабилизатора, должен быть меньше тока, на который рассчитан ваш блок питания и его величина зависит от выходного напряжения стабилизатора. Без нагрузки на выходе стабилизатор потребляет ток примерно равный 0,08 А. Частота импульсной последовательности управляющих импульсов без нагрузки, находится в районе 38 кГц. И еще немного, если будете рисовать печатную плату сами, ознакомьтесь с правилами монтажа микросхемы по ее документации. Стабильная и безотказная работа импульсных устройств зависит не только от качественных деталей, но и в правильной разводке проводников печатной платы. Успехов. К.В.Ю.

Импульсные стабилизаторы постоянного напряжения

Выходное напряжение линейных стабилизаторов обычно меньше U вх на величину падения напряжения на регулирующем элементе. КПД непрерывных стабилизаторов мало (25 75 %), так как на регулирующем элементе рассеивается значительная мощность. В импульсных стабилизаторах регулируемое сопротивление заменяется ключом. В качестве ключа обычно применяют транзистор, который периодически переходит из закрытого состояния в открытое и наоборот, то подсоединяя, то отсоединяя нагрузку, и тем самым регулируя среднюю мощность, забираемую ею от источника. Величина U вых зависит от соотношения длительности открытого и закрытого состояний ключа. Частота переключений регулирующего элемента от единиц до сотен кГц, поэтому сглаживание пульсаций достигается малогабаритным фильтром, включенным после регулирующего элемента. Так как потери мощности в ключе малы, КПД достигает 0.85 0.95 при относительной нестабильности 0.1%.

Функциональная схема импульсного стабилизатора приведена на рис 2.4.10.
Рис. 2.4.10.

СУ - сравнивающее устройство, включающее ИОН. ИУ - импульсное устройство. Регулирующий транзистор VT работает в режиме переключений и соединен последовательно с сопротивлением нагрузки R н. Дроссель и конденсатор образуют сглаживающий фильтр для сглаживания пульсаций U вых. Диод VD включен в обратном направлении. Сигнал ошибки, возникший из-за дестабилизирующих факторов, подается со схемы сравнения, которая содержит ИОН, на вход ИУ. В ИУ происходит преобразование медленно меняющегося постоянного напряжения в последовательность импульсов. Если ИУ создает на своем выходе импульсную последовательность с постоянным периодом повторения и с меняющейся в зависимости от сигнала ошибки длительностью импульса t и, то схему называют стабилизатором с широтно - импульсной модуляцией (ШИМ), если t и =const, а меняется частота, то это стабилизатор с частотно - импульсной модуляцией (ЧИМ). Если же ИУ замыкает ключ при U вых U пор, то такую схему называют релейным или двухпозиционным стабилизатором. VT, VD, L, C образуют силовую цепь, а СУ и ИУ - цепь управления. Рассмотрим работу релейного стабилизатора. При подаче U вх VT открыт и ток через дроссель поступает в R н. Конденсатор заряжается в течение t и. Относительная длительность импульса  и /T. U L =U вх -U вых. Когда U н >=U н.макс, в цепи ООС вырабатывается такой управляющий сигнал, который запирает VT и i k =0 . В дросселе возникает противо ЭДС, препятствующая снижению тока, что способствует отпиранию диода. Энергия, запасенная в фильтре, поступает в R н. i д протекает через дроссель, С, R н, VD. При уменьшении i д уменьшается U н и когда U н <=U н.мин, схема управления вырабатывает отпирающий сигнал, VT открывается, пропуская ток в нагрузку i L =i н =i k +i д . U вых сохраняет заданный средний уровень U н. Из равенства нулю постоянной составляющей напряжения на дросселе следует: (U вх - U вых)=(T - )U вых, откуда U вых = вх (2.4.6).

Рис. 2.4.11.

Принцип действия стабилизатора с ШИМ. Частота переключения регулирующего транзистора постоянна. Изменяется соотношение между длительностями открытого и закрытого состояний регулирующего транзистора. На вход сравнивающего устройства (компаратора) подаются два сигнала, один из которых U ГПН поступает с генератора пилообразного напряжения, а второй - с выходного делителя. Переключение транзистора будет происходить в момент равенства этих сигналов. При увеличении U вх возрастает KU вых, что вызывает уменьшение длительности открытого состояния регулирующего транзистора и соответствующее уменьшение U н. По сравнению с релейным стабилизаторы с ШИМ более сложны и содержат большее число элементов.

Рис. 2.4.12.

В стабилизаторе с ЧИМ t и =const , а частота изменяется. Недостатки такого стабилизатора: сложность схемы управления, обеспечивающей изменение частоты в широких пределах; уменьшение коэффициента сглаживания при уменьшении частоты. В стабилизаторах с ШИМ можно подобрать оптимальную частоту, при которой КПД наибольший. Кроме того, в стабилизаторах с ЧИМ и ШИМ пульсации выходного напряжения меньше. В релейном стабилизаторе U вых~ принципиально не может быть равна нулю, так как периодическое переключение триггера в схеме управления возможно при изменении U н в пределах от U н.макс до н.мин.

Рис. 2.4.13.

В импульсном стабилизаторе с параллельным включением транзистора VT открыт в течение t и =, U L U вх, в дросселе накапливается энергия, а конденсатор разряжается на нагрузку. При запирании транзистора в дросселе наводится ЭДС самоиндукции. U вых =U вх +U L . Под действием этого напряжения открывается диод и конденсатор заряжается, U L =U вых -U вх. Постоянная составляющая на дросселе равна нулю, поэтому U вх  = (U вых - U вх)(T - ) U вых = U вх  + U вх - U вх /(1 - ) = U вх /(1 - ) (2.4.7) Это стабилизатор повышающего типа.

Рис. 2.4.14.

В инвертирующем стабилизаторе (рис. 2.4.14) при открытом VT в течение T в дросселе запасается энергия U L =U вх, конденсатор разряжается на нагрузку. При закрытом VT в дросселе индуцируется ЭДС обратного знака. U L =U вых в течение длительности T-T. Конденсатор заряжается от дросселя через открытый диод. U вх T=U вых (T-T) U вых =U вх /(1-) (2.4.8). По мере повышения частоты переключения регулирующего транзистора происходит увеличение относительной длительности процессов рассасывания избыточных носителей в базе VT и диода. Это может привести к нарушению устойчивой работы и переходу к режиму автоколебаний. Возрастают динамические потери в элементах стабилизатора и уменьшается его КПД. Коммутационные процессы приводят к изменению формы прямоугольных импульсов токов и напряжений (затягиваются передний и задний фронты), но это не столь существенно. А существенно то, что VT испытывает большую кратковременную перегрузку по току. Когда на базу закрытого VT поступает управляющий импульс, открывающий его, I к начинает нарастать, а ток через блокирующий диод VD убывать. Поскольку VD еще открыт, VT работает в режиме короткого замыкания и к нему приложено U вх и I к может в 5 10 раз превосходить I н. Таким образом, инерционность реальных диодов является основной причиной коммутационных перегрузок регулирующих транзисторов. Эти перегрузки будут тем больше, чем лучше импульсные свойства VT и хуже быстродействие диода. Приходится выбирать более мощный транзистор, использование которого по току будет низким. Для уменьшения перегрузок в коллекторную или эмиттерную цепи вводят токоограничивающие элементы. Введение дополнительного дросселя в коллекторную цепь показано на рис. 2.4.15.

Рис. 2.4.15.

L доп уменьшает скорость нарастания I к. R доп обеспечивает запирание VD доп к моменту открывания транзистора VT. Разряд дросселя происходит при закрытом VT через диод VD доп на R доп. В коллекторную или эмиттерную цепь может быть введен двухобмоточный дроссель (рис. 2.4.16).

Рис. 2.4.16.

Электромагнитная энергия, накопленная в L доп, при протекании тока через VT возвращается обратно в источник при закрытом VT. По сравнению с предыдущим случаем КПД стабилизатора увеличивается за счет исключения потерь мощности в R доп. При протекании тока через VD доп U кэ.макс =U вх +U вх W 1 /W 2 . Для уменьшения U кэ.макс соотношение между W 1 и W 2 должно быть W 2 (5 10)W 1 . При этом амплитуда напряжения на закрытом диоде U доп =(5 10)U вх. С целью уменьшения U кн, t вкл и I кэ0 запирание регулируемого транзистора производится подключением к переходу база - эмиттер источника U зап (рис. 2.4.17а).

Рис. 2.4.17

Когда VT1 открыт, VT2 закрыт, C1 заряжается током базы I б1 . При отпирании VT2 U c1 закрывает VT1. U c1 может изменяться в зависимости от U вх, U c1 разряжается на R 1 . Поэтому вместо R 1 включают стабилитрон или диоды в прямом направлении (рис. 2.4.17б). Хотя импульсные стабилизаторы экономичнее непрерывных, им присущи некоторые недостатки, основными из которых являются: 1) повышенное значение коэффициента пульсаций выходного напряжения (у релейных до 10 20%, с ШИМ - 0.1 1%); 2) большое динамическое внутреннее сопротивление, то есть падающая внешняя характеристика; 3) большие помехи, создаваемые стабилизатором, для ослабления которых на входе и выходе включаются дополнительные фильтры. Это определяет их область применения: в устройствах электропитания с постоянным током нагрузки значительной мощности, где требуются малый вес и габариты, но допускаются значительные пульсации U вых. В настоящее время выпускается три разновидности интегральных микросхем (ИМС) импульсных стабилизаторов: 1) импульсные стабилизаторы повышающего типа, с питанием от низкого входного напряжения от 2 до 12В, с минимальной рассеиваемой мощностью и встроенным полевым транзистором (серия стабилизаторов 1446ПН1, 1446ПН2, 1446ПН3); 2) универсальные маломощные ИМС, которые можно использовать при построении самых различных схем импульсных стабилизаторов (например, 142ЕП1 или 1156ЕУ1); 3) законченные стабилизаторы, включающие схему управления и силовой транзистор на ток до 10А (например, 1155ЕУ1). В таблице 1 приведены основные характеристики ИМС импульсных стабилизаторов этих трех групп. Повышающие импульсные стабилизаторы 1446ПН1, 1446 ПН2 и 1446ПН3 предназначены для работы с низким входным напряжением и фиксированным выходным напряжением +5 или +12В. КПД таких стабилизаторов доходит до 88%, а рабочая частота до - 170 кГц. При малой выходной мощности в качестве ключевого элемента используется внутренний полевой транзистор. Для питания мощных нагрузок необходимо использование дополнительного биполярного или полевого транзистора. Основное применение такие ИМС находят в источниках бесперебойного питания отдельных плат ЭВМ, при питании измерительных приборов от гальванических элементов, в переносных устройствах связи.

Таблица 1 Основные характеристики ИМС управления импульсными стабилизаторами

Функциональное назначение

f пр,кГц

Pрас,Вт (КПД,%)

1446ПН1 (MAX731)

Повышающий конвертор

1446ПН2 (MAX734)

1446ПН3 (MAX641)

142ЕП1 (LM100)

Набор элементов для построения импульсного стабилизатора

1156ЕУ1 (µA78S40)

1155ЕУ1 (LAS6380)

Мощный импульсный стабилизатор

Наиболее универсальными являются ИМС второй группы, которые, по существу, представляют собой набор элементов для построения импульсных стабилизаторов различных типов. Из этих микросхем наиболее совершенной является ИМС типа 1156ЕУ1, упрощенная структурная схема которой приведена на рис.2.4.18. Микросхема представляет собой набор типовых блоков импульсного стабилизатора, расположенных на одном кристалле. В состав ИМС входят следующие узлы и блоки: источник опорного напряжения 1,25В; операционный усилитель с напряжением смещения 4мВ, коэффициентом усиления больше 200 тыс., скоростью нарастания 0,6В/мкс; широтно - импульсный модулятор, включающий задающий генератор, компаратор, схему "И" и RS - триггер; ключевой транзистор с драйвером (предварительным усилителем); силовой диод с прямым током 1А и обратным напряжением 40В.

Рис. 2.4.18.

Микросхема может управлять внешним биполярным или полевым транзистором, если требуется выходной ток больше 1,5А и напряжение выше 40В. ИМС 142ЕП1 использована в схеме ИСН релейного типа, структурная схема которого приведена на рис. 2.4.19.

Рис. 2.4.19 ИСН релейного типа.

ФРП - двухзвенный LC фильтр радиопомех, ослабляющий напряжение радиопомех, вносимых стабилизатором напряжения в первичную сеть при его работе. РЭ - силовой транзисторный ключ состоящий из ИМС типа 286ЕП3 (набор двух мощных транзисторов), дополнительного умощняющего транзистора VT и Др, ограничивающего скорость нарастания тока I к транзистора VT. СФ - (VD, L и C), фильтр, интегрирующий последовательность однополярных импульсов. ВФ - высокочастотный фильтр, дополнительно ослабляющий напряжение высокочастотных пульсаций тока нагрузки. УЗ - устройство защиты, обеспечивает защиту от перегрузок (транзисторная защита). На один из входов дифференциального УПТ подается опорное напряжение, на другой вход - напряжение с делителя, равное опорному. Сигнал рассогласования через эмиттерный повторитель ЭП поступает на триггер Шмидта. На его выходе вырабатываются однополярные импульсы, длительность которых изменяется в зависимости от сигнала УПТ. Эти импульсы управляют параллельным ключом ПК, который открывает или закрывает транзистор РЭ.

LM2596 понижает входное (до 40 В) напряжение - выходное регулируется, ток 3 А. Идеален для светодиодов в машине. Очень дешёвые модули - около 40 рублей в Китае.

Компания Texas Instruments выпускает качественные, надежные, доступные и дешёвые, удобные в применении DC-DC контроллеры LM2596. Китайские заводы выпускают на её основе сверхдешёвые импульсные понижающие (stepdown) конвертеры: цена модуля на LM2596 примерно 35 рублей (вместе с доставкой). Я советую купить сразу партию в 10 штук - для них всегда найдётся применение, при этом цена опустится до 32 рублей, и меньше 30 рублей при заказе 50 штук. Подробнее о расчёте обвязки микросхемы, регулировке тока и напряжения, его применении и о некоторых минусах конвертера.

Типичный метод использования - стабилизированный источник напряжения. На основе этого стабилизатора легко сделать импульсный блок питания, я применяю её как простой и надёжный лабораторный блок питания, выдерживающий короткое замыкание. Они привлекательны постоянством качества (похоже, все они делаются на одном заводе - да и сложно сделать ошибки в пяти деталях), и полным соответствием даташиту и заявленным характеристикам.

Другая область применения - импульсный стабилизатор тока для питания мощных светодиодов . Модуль на этой микросхеме позволит вам подключить автомобильную светодиодную матрицу на 10 Ватт, дополнительно обеспечив защиту от КЗ.

Крайне рекомендую купить их десяток штук - обязательно пригодятся. Они по–своему уникальны - входное напряжение вплоть до 40 вольт, и требуется лишь 5 внешних компонентов. Это удобно - можно поднять напряжение на шине электропитания умного дома до 36 вольт, уменьшив сечение кабелей. В точках потребления ставим такой модуль и настраиваем его на нужные 12, 9, 5 вольт или сколько понадобится.

Рассмотрим их подробнее.

Характеристики микросхемы:

  • Входное напряжение - от 2.4 до 40 вольт (до 60 вольт в версии HV)
  • Выходное напряжение - фиксированное либо регулируемое (от 1.2 до 37 вольт)
  • Выходной ток - до 3 ампер (при хорошем охлаждении - до 4.5А)
  • Частота преобразования - 150кГц
  • Корпус - TO220-5 (монтаж в отверстия) либо D2PAK-5 (поверхностный монтаж)
  • КПД - 70-75% на низких напряжениях, до 95% на высоких
  1. Источник стабилизированного напряжения
  2. Схема преобразователя
  3. Даташит
  4. USB-зарядник на основе LM2596
  5. Стабилизатор тока
  6. Применение в самодельных устройствах
  7. Регулировка выходного тока и напряжения
  8. Улучшенные аналоги LM2596

История - линейные стабилизаторы

Для начала, объясню чем плохи стандартные линейные преобразователи напряжения вроде LM78XX (например 7805) или LM317. Вот его упрощённая схема.

Главный элемент такого преобразователя - мощный биполярный транзистор, включенный в своём «исконном» значении - как управляемый резистор. Этот транзистор входит в состав пары Дарлингтона (для увеличения коэффициента передачи по току и снижения мощности, необходимой на работу схемы). Базовый ток задаётся операционным усилителем, который усиливает разность между выходным напряжением и заданным с помощью ИОН (источник опорного напряжения), т.е. он включен по классической схеме усилителя ошибки.

Таким образом, преобразователь просто включает резистор последовательно с нагрузкой, и управляет его сопротивлением чтобы на нагрузке гасилось, к примеру, ровно 5 вольт. Нетрудно посчитать что при понижении напряжения с 12 вольт до 5 (очень частый случай применения микросхемы 7805) входные 12 вольт распределяются между стабилизатором и нагрузкой в отношении «7 вольт на стабилизаторе + 5 вольт на нагрузке». На токе в полампера на нагрузке выделяется 2.5 ватта, а на 7805 - целых 3.5 ватта.

Получается что «лишние» 7 вольт просто гасятся на стабилизаторе, превращаясь в тепло. Во-первых, из-за этого возникают проблемы с охлаждением, а во-вторых на это уходит много энергии из источника питания. При питании от розетки это не очень страшно (хотя всё равно наносится вред экологии), а при батарейном или аккумуляторном питании об этом нельзя не помнить.

Другая проблема - таким методом вообще невозможно сделать повышающий преобразователь. Часто такая потребность возникает, и попытки решить этот вопрос двадцать-тридцать лет назад поражают - насколько сложен был синтез и расчёт таких схем. Одна из простейших схем такого рода - двухтактный преобразователь 5В->15В.

Нужно признать, что он обеспечивает гальваническую развязку, однако он неэффективно использует трансформатор - каждый момент времени задействована лишь половина первичной обмотки.

Забудем это как страшный сон и перейдём к современной схемотехнике.

Источник напряжения

Схема

Микросхема удобна в применении в качестве step–down конвертера: мощный биполярный ключ находится внутри, осталось добавить остальные компоненты регулятора - быстрый диод, индуктивность и выходной конденсатор, также возможно поставить входной конденсатор - всего 5 деталей.

В версии LM2596ADJ также потребуется схема задания выходного напряжения, это два резистора или один переменный резистор.

Схема понижающего преобразователя напряжения на основе LM2596:

Вся схема вместе:

Здесь можно скачать даташит/datasheet на LM2596 .

Принцип работы: управляемый ШИМ–сигналом мощный ключ внутри устройства посылает импульсы напряжения на индуктивность. В точке А x% времени присутствует полное напряжение, и (1–x)% времени напряжение равно нулю. LC–фильтр сглаживает эти колебания, выделяя постоянную составляющую, равную x * напряжение питания. Диод замыкает цепь, когда транзистор выключен.

Подробное описание работы

Индуктивность противится изменению тока через неё. При появлении напряжения в точке А дроссель создаёт большое отрицательное напряжение самоиндукции, и напряжение на нагрузке становится равно разности напряжения питания и напряжения самоиндукции. Ток индуктивности и напряжение на нагрузке постепенно растут.

После пропадания напряжения в точке А дроссель стремится сохранить прежний ток, текущий из нагрузки и конденсатора, и замыкает его через диод на землю - он постепенно падает. Таким образом, напряжение на нагрузке всегда меньше входного напряжения и зависит от скважности импульсов.

Выходное напряжение

Модуль выпускается в четырёх версиях: с напряжением 3.3В (индекс –3.3), 5В (индекс –5.0), 12В (индекс –12) и регулируемая версия LM2596ADJ. Имеет смысл везде применять именно настраиваемую версию, поскольку она в большом количестве есть на складах электронных компаний и вы вряд ли столкнётесь с её дефицитом - а она требует дополнительно лишь два копеечных резистора. Ну и конечно, версия на 5 вольт тоже пользуется популярностью.

Количество на складе - в последнем столбце.

Можно сделать задание выходного напряжения в виде DIP-переключателя, хороший пример этого приведён здесь, либо в виде поворотного переключателя. В обоих случаях потребуется батарея точных резисторов - зато можно настраивать напряжение без вольтметра.

Корпус

Существует два варианта корпусов: корпус для планарного монтажа TO–263 (модель LM2596S) и корпус для монтажа в отверстия TO–220 (модель LM2596T). Я предпочитаю применять планарную версию LM2596S, поскольку в этом случае радиатором является сама плата, и отпадает необходимость покупать дополнительный внешний радиатор. К тому же её механическая стойкость гораздо выше, в отличие от TO-220, которую обязательно надо к чему–то привинчивать, хотя бы даже к плате - но тогда проще установить планарную версию. Микросхему LM2596T-ADJ я рекомендую использовать в блоках питания, потому что с её корпуса легче отвести большое количество тепла.

Сглаживание пульсаций входного напряжения

Можно использовать как эффективный «интеллектуальный» стабилизатор после выпрямления тока. Поскольку микросхема следит непосредственно за величиной выходного напряжения, колебания входного напряжения вызовут обратно пропорциональное изменение коэффициента преобразования микросхемы, и выходное напряжение останется в норме.

Из этого следует, что при использовании LM2596 в качестве понижающего преобразователя после трансформатора и выпрямителя, входной конденсатор (т.е. тот который стоит сразу после диодного моста) может иметь небольшую ёмкость (порядка 50-100мкФ).

Выходной конденсатор

Благодаря высокой частоте преобразования выходной конденсатор тоже не обязан иметь большую ёмкость. Даже мощный потребитель не успеет значительно посадить этот конденсатор за один цикл. Проведём расчёт: возьмём конденсатор в 100мкФ, 5В выходного напряжения и нагрузку, потребляющую 3 ампера. Полный заряд конденсатора q = C*U = 100e-6 мкФ * 5 В = 500e-6 мкКл.

За один цикл преобразования нагрузка заберёт из конденсатора dq = I*t = 3 А * 6.7 мкс = 20 мкКл (это всего 4% от полного заряда конденсатора), и тут же начнётся новый цикл, и преобразователь засунет в конденсатор новую порцию энергии.

Самое главное - не используйте в качестве входного и выходного конденсатора танталовые конденсаторы. У них прямо в даташитах пишут - «не использовать в цепях питания», потому что они очень плохо переносят даже кратковременные превышения напряжения, и не любят высокие импульсные токи. Используйте обычные алюминиевые электролитические конденсаторы.

Эффективность, КПД и тепловые потери

КПД не так высок, поскольку в качестве мощного ключа используется биполярный транзистор - а он имеет ненулевое падение напряжения, порядка 1.2В. Отсюда и падение эффективности при маленьких напряжениях.

Как видим, максимальная эффективность достигается при разности входного и выходного напряжений порядка 12 вольт. То есть, если нужно уменьшить напряжение на 12 вольт - в тепло уйдёт минимальное количество энергии.

Что такое эффективность преобразователя? Это величина, характеризующая токовые потери - на выделение тепла на полностью открытом мощном ключе по закону Джоуля-Ленца и на аналогичные потери при переходных процессах - когда ключ открыт, допустим, лишь наполовину. Эффекты от обоих механизмов могут быть сравнимы по величине, поэтому не нужно забывать про оба пути потерь. Небольшая мощность идёт также на питание самих «мозгов» преобразователя.

В идеальном случае, при преобразовании напряжения с U1 до U2 и выходном токе I2 выходная мощность равна P2 = U2*I2, входная мощность равна ей (идельный случай). Значит, входной ток составит I1 = U2/U1*I2.

В нашем же случае преобразование имеет эффективность ниже единицы, поэтому часть энергии останется внутри прибора. Например, при эффективности η выходная мощность составит P_out = η*P_in, а потери P_loss = P_in-P_out = P_in*(1-η) = P_out*(1-η)/η. Конечно, преобразователь вынужден будет увеличить входной ток, чтобы поддерживать заданные выходные ток и напряжение.

Можно считать, что при преобразовании 12В -> 5В и выходном токе 1А потери в микросхеме составят 1.3 ватта, а входной ток будет равен 0.52А. В любом случае это лучше любого линейного преобразователя, который даст минимум 7 ватт потерь, и потребит из входной сети (в том числе на это бесполезное дело) 1 ампер - в два раза больше.

Кстати, микросхема LM2577 имеет в три раза меньшую частоту работы, и её эффективность несколько выше, поскольку меньше потерь в переходных процессах. Однако, ей нужны в три раза более высокие номиналы дросселя и выходного конденсатора, а это лишние деньги и размер платы.

Увеличение выходного тока

Несмотря на и так довольно большой выходной ток микросхемы, иногда требуется ещё бОльший ток. Как выйти из этой ситуации?

  1. Можно запараллелить несколько преобразователей. Конечно, они должны быть настроены точно на одно и то же выходное напряжение. В таком случае нельзя обойтись простыми SMD-резисторами в цепи задания напряжения Feedback, нужно использовать либо резисторы с точностью 1%, либо вручную задавать напряжение переменным резистором.
Если нет уверенности в маленьком разбросе напряжений — лучше параллелить преобразователи через небольшой шунт, порядка нескольких десятков миллиом. Иначе вся нагрузка ляжет на плечи преобразователя с самым высоким напряжением и он может не справиться. 2. Можно использовать хорошее охлаждение — большой радиатор, многослойная печатная плата большой площади. Это даст возможность [поднять ток](/lm2596-tips-and-tricks/ "Применение LM2596 в устройствах и разводка платы") до 4.5А. 3. Наконец, можно [вынести мощный ключ](#a7) за пределы корпуса микросхемы. Это даст возможность применить полевой транзистор с очень маленьким падением напряжения, и здорово увеличит как выходной ток, так и КПД.

USB-зарядник на LM2596

Можно сделать очень удобный походный USB-зарядник. Для этого необходимо настроить регулятор на напряжение 5В, снабдить его USB-портом и обеспечить питание зарядника. Я использую купленный в Китае радиомодельный литий-полимерный аккумулятор, обеспечивающий 5 ампер-часов при напряжении 11.1 вольта. Это очень много - достаточно для того чтобы 8 раз зарядить обычный смартфон (не учитывая КПД). С учётом КПД получится не меньше 6 раз.

Не забудьте замкнуть контакты D+ и D- гнезда USB, чтобы сообщить телефону что он подключен к заряднику, и передаваемый ток неограничен. Без этого мероприятия телефон будет думать, что он подключен к компьютеру, и будет заряжаться током в 500мА - очень долго. Более того, такой ток может даже не скомпенсировать ток потребления телефона, и аккумулятор вовсе не будет заряжаться.

Также можно предусмотреть отдельный вход 12В от автомобильного аккумулятора с разъёмом прикуривателя - и переключать источники каким-либо переключателем. Советую установить светодиод, который будет сигнализировать что устройство включено, чтобы не забыть выключить батарею после полной зарядки - иначе потери в преобразователе полностью посадят резервную батарею за несколько дней.

Такой аккумулятор не слишком подходит, потому что он рассчитан на высокие токи - можно попробовать найти менее сильноточную батарею, и она будет иметь меньшие размеры и вес.

Стабилизатор тока

Регулировка выходного тока

Возможна только в версии с настраиваемым выходным напряжением (LM2596ADJ). Кстати, китайцы делают и такую версию платы, с регулировкой напряжения, тока и всевозможной индикацией - готовый модуль стабилизатора тока на LM2596 с защитой от КЗ, можно купить под названием xw026fr4.

Если вы не хотите применять готовый модуль, и желаете сделать эту схему самостоятельно - ничего сложного, за одним исключением: у микросхемы нет возможности управления током, однако её можно добавить. Я объясню, как это сделать, и попутно разъясню сложные моменты.

Применение

Стабилизатор тока - штука, нужная для питания мощных светодиодов (кстати - мой проект микроконтроллерного драйвера мощного светодиода ), лазерных диодов, гальваники, заряда аккумуляторов. Как и в случае со стабилизаторами напряжения, есть два типа таких устройств - линейный и импульсный.

Классический линейный стабилизатор тока - это LM317, и он вполне хорош в своём классе - но его предельный ток 1.5А, для многих мощных светодиодов этого недостаточно. Даже если умощнить этот стабилизатор внешним транзистором - потери на нём просто неприемлемы. Весь мир катит бочку на энергопотребление лампочек дежурного питания, а тут LM317 работает с КПД 30% Это не наш метод.

А вот наша микросхема - удобный драйвер импульсного преобразователя напряжения, имеющий много режимов работы. Потери минимальны, поскольку не применяется никаких линейных режимов работы транзисторов, только ключевые.

Изначально она предназначалась для схем стабилизации напряжения, однако несколько элементов превращают её в стабилизатор тока. Дело в том, что микросхема всецело полагается на сигнал «Feedback» в качестве обратной связи, а вот что на него подавать - это уже наше дело.

В стандартной схеме включения на эту ногу подаётся напряжение с резистивного делителя выходного напряжения. 1.2В - это равновесие, если Feedback меньше - драйвер увеличивает скважность импульсов, если больше - уменьшает. Но ведь можно на этот вход подать напряжение с токового шунта!

Шунт

Например, на токе 3А нужно взять шунт номиналом не более 0.1Ом. На таком сопротивлении этот ток выделит около 1Вт, так что и это много. Лучше запараллелить три таких шунта, получив сопротивление 0.033Ом, падение напряжения 0.1В и выделение тепла 0.3Вт.

Однако, вход Feedback требует напряжение 1.2В - а мы имеем лишь 0.1В. Ставить бОльшее сопротивление нерационально (тепла будет выделяться в 150 раз больше), поэтому остаётся как-то увеличить это напряжение. Делается это с помощью операционного усилителя.

Неинвертирующий усилитель на ОУ

Классическая схема, что может быть проще?

Объединяем

Теперь объединяем обычную схему преобразователя напряжения и усилитель на ОУ LM358, к входу которого подключаем токовый шунт.

Мощный резистор 0.033 Ом - это и есть шунт. Его можно сделать из трёх резисторов 0.1 Ом, соединённых параллельно, а для увеличения допустимой рассеиваемой мощности - используйте SMD-резисторы в корпусе 1206, поставьте их с небольшим промежутком (не вплотную) и постарайтесь максимально оставить слой меди вокруг резисторов и под ними. На выход Feedback подключен небольшой конденсатор, чтобы устранить возможный переход в режим генератора.

Регулируем и ток и напряжение

Давайте заведём на вход Feedback оба сигнала - и ток, и напряжение. Для объединения этих сигналов воспользуемся обычной схемой монтажного «И» на диодах. Если сигнал тока выше сигнала напряжения - он будет доминировать и наоборот.

Пару слов о применимости схемы

Вы не можете регулировать выходное напряжение. Хотя невозможно регулировать одновременно и выходной ток, и напряжение - они пропорциональны друг другу, с коэффициентом «сопротивление нагрузки». А если блок питания реализует сценарий вроде «постоянное выходное напряжение, но при превышении тока начинаем уменьшать напряжение», т.е. CC/CV - то это уже зарядное устройство.

Максимальное напряжение питания схемы - 30В, поскольку это предел для LM358. Можно расширить этот предел до 40В (или 60В с версией LM2596-HV), если питать ОУ от стабилитрона.

В последнем варианте в качестве суммирующих диодов необходимо использовать диодную сборку, поскольку в ней оба диода сделаны в рамках одного технологического процесса и на одной пластине кремния. Разброс их параметров будет гораздо меньше разброса параметров отдельных дискретных диодов - благодаря этому мы получим высокую точность отслеживания значений.

Также нужно внимательно следить за тем, чтобы схема на ОУ не возбудилась и не перешла в режим генерации. Для этого старайтесь уменьшить длину всех проводников, а особенно дорожки, подключенной к 2 выводу LM2596. Не располагайте ОУ вблизи этой дорожки, а диод SS36 и конденсатор фильтра расположите ближе к корпусу LM2596, и обеспечьте минимальную площадь петли земли, подключенной к этим элементам - необходимо обеспечить минимальную длину пути возвратного тока «LM2596 -> VD/C -> LM2596″.

Применение LM2596 в устройствах и самостоятельная разводка платы

О применении микросхемы в своих устройствах не в виде готового модуля я подробно рассказал в другой статье , в которой рассмотрены: выбор диода, конденсаторов, параметров дросселя, а также рассказал про правильную разводку и несколько дополнительных хитростей.

Возможности дальнейшего развития

Улучшенные аналоги LM2596

Проще всего после этой микросхемы перейти на LM2678 . По сути - это тот же самый stepdown преобразователь, только с полевым транзистором, благодаря которому КПД поднимается до 92%. Правда, у него 7 ног вместо 5, и он не pin-to-pin совместимый. Тем не менее эта микросхема очень похожа, и будет простым и удобным вариантом с улучшенной эффективностью.

L5973D – довольно старая микросхема, обеспечивающая до 2.5А, и немного более высокий КПД. Также у неё почти в два раза выше частота преобразования (250 кГц) - следовательно, требуются меньшие номиналы индуктивности и конденсатора. Однако, я видел что с ней происходит, если поставить её напрямую в автомобильную сеть - довольно часто выбивает помехами.

ST1S10 - высокоэффективный (КПД 90%) DC–DC stepdown преобразователь.

  • Требует 5–6 внешних компонентов;

ST1S14 - высоковольтный (до 48 вольт) контроллер. Большая частота работы (850 кГц), выходной ток до 4А, выход Power Good, высокий КПД (не хуже 85%) и схема защиты от превышения тока нагрузки делают его, наверное, лучшим преобразователем для питания сервера от 36–вольтового источника.

Если требуется максимальный КПД - придётся обращаться к неинтегрированным stepdown DC–DC контроллерам. Проблема интегрированных контроллеров в том, что в них никогда не бывает классных силовых транзисторов - типичное сопротивление канала не выше 200мОм. Однако если взять контроллер без встроенного транзистора - можно выбрать любой транзистор, хоть AUIRFS8409–7P с сопротивлением канала в пол–миллиома

DC-DC преобразователи с внешним транзистором

Следующая часть

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости