Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости

В современном мире сложно представить себе существование без электрической энергии. Освещение, отопление, связь и прочие радости комфортной жизни напрямую зависят от неё. Это заставляет искать альтернативные и независимые источники, одним из которых является солнце. Эта область энергетики пока ещё не слишком развита, и промышленные установки стоят недёшево. Выходом станет изготовление солнечных батарей своими руками.

Что такое солнечная батарея

Солнечная батарея представляет собой панель, состоящую из соединённых между собой фотоэлементов. Она напрямую преобразует солнечную энергию в электрический ток. В зависимости от устройства системы, электрическая энергия аккумулируется или сразу идёт на энергообеспечение зданий, механизмов и приборов.

Солнечная батарея состоин из соединённых между собой фотоэлементов

Простейшими фотоэлементами пользовался почти каждый. Они встроены в калькуляторы, фонарики, аккумуляторы для подзарядки электронных гаджетов, садовые фонарики. Но этим использование не ограничивается. Существуют электромобили с подзарядкой от солнца, в космосе это один из основных источников энергии.

В странах с большим количеством солнечных дней батареи устанавливаются на крышах домов и используются для отопления и нагрева воды. Этот вид называют коллекторами, они преобразуют энергию солнца в тепловую.

Нередко электроснабжение целых городов и посёлков происходит только за счёт этого вида энергии. Строятся электростанции, работающие на солнечной радиации. Особенное распространение они получили в США, Японии и Германии.

Устройство

В основе устройства солнечной батареи лежит явление фотоэффекта, открытое в ХХ веке А.Энштейном. Выяснилось, что в некоторых веществах под действием солнечного света или других веществ, происходит отрыв заряженных частиц. Это открытие и привело в 1953 году к созданию первого гелиомодуля.

Материалом для изготовления элементов служат полупроводники - совмещённые пластины из двух материалов с разной проводимостью. Чаще всего для их изготовления используется поликристаллический или монокристаллический кремний с различными добавками.

Под действием солнечного света в одном слое появляется избыток электронов, а в другом - их недостаток. «Лишние» электроны переходят в область с их недостатком, этот процесс получил название р-n переход.

Солнечный элемент состоит из двух полупроводниковых слоём с разной проводимостью

Между материалами, образующими избыток и недостаток электронов, помещён барьерный слой, препятствующий переходу. Это необходимо для того, чтобы ток возникал только при наличии источника потребления энергии.

Попадающие на поверхность фотоны света выбивают электроны и снабжают их необходимой энергией для преодоления барьерного слоя. Отрицательные электроны переходят из р-проводника в n-проводник, а положительные совершают обратный путь.

За счёт разной проводимости материалов полупроводника удаётся создать направленное движение электронов. Таким образом возникает электрический ток.

Элементы последовательно соединены между собой, образуя панель большей или меньшей площади, которую и называют батареей. Такие батареи можно напрямую подключать к источнику потребления. Но поскольку солнечная активность в течение суток меняется, а ночью прекращается вообще, используют аккумуляторы, накапливающие энергию на время отсутствия солнечного света.

Необходимой составляющей в этом случае является контроллер. Он служит для контроля за зарядкой аккумулятора и отключает батарею при полном заряде.

Вырабатываемый солнечной батареей ток является постоянным, для использования его необходимо преобразовать в переменный. Для этого служит инвертор.

Поскольку все электрические приборы, потребляющие энергию, рассчитаны на определённое напряжение, в системе необходим стабилизатор, обеспечивающий нужные значения.

Между гелиомодулем и потребителем устанавливают дополнительные приборы

Только при наличии всех этих составляющих можно получить функциональную систему, снабжающую энергией потребители и не грозящую вывести их из строя.

Виды элементов для модулей

Существует три основных типа гелиопанелей: поликристаллические, монокристаллические и тонкоплёночные. Чаще всего все три типа производятся из кремния с различными добавками. Используются также теллурид кадмия и селенид меди-кадмия, особенно для производства плёночных панелей. Эти добавки способствуют увеличению эффективности ячеек на 5-10 %.

Кристаллические

Самые популярные - монокристаллические. Они изготавливаются из монокристаллов, имеют равномерную структуру. Такие пластины имеют форму многоугольника или прямоугольника со срезанными углами.

Монокристаллическая ячейка имеет форму прямоугольника со скошеными углами

Батарея, собранная из монокристаллических элементов, имеет большую по сравнению с другими видами производительность, её КПД 13 %. Она легка и компактна, не боится небольшого изгиба, может быть установлена на неровную поверхность, срок службы 30 лет.

К недостаткам можно отнести значительное снижение мощности при облачности, вплоть до полного прекращения выработки энергии. Это же происходит и при затемнении, ночью батарея работать не будет.

Поликристаллическая ячейка имеет форму прямоугольника, что позволяет собрать панель без пропусков

Поликристаллические производятся методом литья, имеют прямоугольную или квадратную форму и неоднородную структуру. Эффективность их ниже монокристаллических, КПД всего 7-9 %, но падение выработки при облачности, запылении или в сумерках несущественно.

Поэтому их применяют при устройстве уличного освещения, их же чаще используют самоделкины. Стоимость таких пластин ниже монокристаллов, срок эксплуатации 20 лет.

Плёночные

Токкоплёночные или гибкие элементы изготавливаются из аморфной формы кремния. Гибкость панелей делает их мобильными, свернув рулоном их можно взять с собой в путешествия и иметь независимый источник энергии в любом месте. Это же свойство позволяет монтировать их на криволинейных поверхностях.

Плёночная батарея изготавливается из аморфного кремния

По эффективности плёночные панели уступают кристаллическим в два раза, для производства одинакового количества необходима двойная площадь батареи. Да и долговечностью плёнка не отличается - в первые 2 года их эффективность падает на 20-40 %.

Но при облачности или затемнении выработка энергии сокращается всего на 10-15 %. Несомненным достоинством можно считать их относительную дешевизну.

Из чего можно сделать гелиопанель в домашних условиях

Несмотря на все преимущества батарей промышленного производства, главным их недостатком является высокая цена. Этой неприятности можно избежать, изготовив простейшую панель своими руками из подручных материалов.

Из диодов

Диод - это кристалл в пластиковом корпусе, выступающем в роли линзы. Она концентрирует солнечные лучи на проводнике, в результате возникает электрический ток. Соединив между собой большое количество диодов, получаем солнечную батарею. В качестве платы можно использовать картон.

Проблема в том, что мощность полученной энергии мала, для выработки достаточного количества понадобится огромное количество диодов. По финансовым и трудозатратам такая батарея намного превосходит заводскую, а по мощности сильно ей уступает.

Кроме того, выработка резко падает при уменьшении освещённости. Да и сами диоды ведут себя некорректно - нередко возникает самопроизвольное свечение. То есть сами же диоды потребляют произведённую энергию. Вывод напрашивается сам: неэффективно.

Из транзисторов

Как и в диодах, главный элемент транзистора - кристаллик. Но он заключён в металлический корпус, не пропускающий солнечный свет. Для изготовления батареи крышка корпуса спиливается ножовкой по металлу.

Батарею небольшой мощности можно собрать из транзисторов

Затем элементы крепят к пластине из текстолита или другого материала, подходящего на роль платы, и соединяют между собой. Таким способом можно собрать батарею, энергии которой достаточно для работы фонарика или радиоприёмника, но большой мощности ожидать от такого устройства не стоит.

Но в качестве походного источника энергии небольшой мощности вполне подойдёт. Особенно если вас увлекает сам процесс создания и не очень важна практическая польза от результата.

Умельцы предлагают использовать в качестве фотоэлементов CD-диски и даже медные пластины. Портативную зарядку для телефона несложно изготовить из фотоэлементов от садовых фонариков.

Лучшим решением будет покупка готовых пластин. Некоторые интернет-площадки продают модули с небольшим производственным браком по приемлемой цене, они вполне пригодны для использования.

Рациональное размещение батарей

От размещения модулей в большой степени зависит, сколько энергии будет производить система. Чем больше лучей попадёт на фотоэлементы, тем больше они произведут энергии. Для оптимального расположения нужно соблюдать следующие условия:


Важно! Сила тока батареи задаётся производительностью самого слабого элемента. Даже небольшая тень на одном модуле может снизить производительность системы от 10 до 50%.

Как рассчитать необходимую мощность

Прежде чем приступить к сборке батареи, необходимо определиться с требуемой мощностью. От этого зависит количество приобретаемых ячеек и общая площадь готовых батарей.

Система может быть как автономной (самостоятельно обеспечивающей электричеством дом), так и комбинированной, совмещающей энергию солнца и традиционного источника.

Расчёт состоит из трёх шагов:

  1. Выясните общую потребляемую мощность.
  2. Определите достаточную ёмкость аккумуляторной батареи и мощность инвертора.
  3. Вычислите необходимое количество ячеек на основе данных об инсоляции в вашем регионе.

Потребляемая мощность

Для автономной системы определить её можно по вашему электросчётчику. Общее количество потребляемой энергии за месяц разделите на количество дней и получите среднее значение ежедневного потребления.

Если от батареи будет запитана только часть устройств, выясните их мощность по паспорту или маркировке на приборе. Полученные значения умножьте на количество часов работы в сутки. Сложив полученные значения для всех устройств, получите среднее потребление в сутки.

Ёмкость АБ (аккумуляторной батареи) и мощность инвертора

АБ для солнечных систем должны выдерживать большое количество циклов разряда и разряда, иметь малый саморазряд, выдерживать большой ток зарядки, работать при высоких и низких температурах, при этом требовать минимального обслуживания. Эти параметры оптимальны у свинцово-кислотных АБ.

Ещё один немаловажный показатель - ёмкость, максимальный заряд, который может принять и сохранить аккумулятор. Недостаточную ёмкость увеличивают, соединяя АБ параллельно, последовательно или комбинируя оба соединения.

Выяснить необходимое количество АБ поможет расчёт. Рассмотрим его для концентрации запаса энергии на 1 день в АБ ёмкостью 200 А.ч и напряжением 12 В.

Предположим, ежедневная потребность составляет 4800 В.час, выходное напряжение системы 24 В. Учтём, что потери на инверторе составят 20%, введём поправочный коэффициент 1,2.

4800:24х1.2=240 А.ч

Глубина разряда АБ не должны превышать 30-40%, учтём это.

240х0.4= 600 А.ч

Полученное значение втрое превышает ёмкость аккумулятора, поэтому для запаса необходимого количества потребуется 3 АБ, соединённых параллельно. Но при этом напряжение аккумулятора 12 В, чтобы увеличить его в два раза, понадобится ещё 3 АБ, соединённых последовательно.

Для получения напряжения в 48 В соедините параллельно две параллельные цепочки по 4 АБ

Инвертор служит для преобразования постоянного тока в переменный. Выбирают его по пиковой, максимальной нагрузке. На некоторых потребляющих устройствах величина пускового тока значительно выше номинальной. Именно этот показатель и берётся в расчёт. В остальных случаях учитываются номинальные значения.

Имеет значение и форма напряжения. Лучший вариант - чистая синусоида. Для приборов, нечувствительных к перепадам напряжения подойдёт квадратная форма. Следует также учитывать возможность переключения прибора от АБ напрямую к солнечным батареям.

Необходимое количество ячеек

Показатели инсоляции в разных областях сильно отличаются. Для правильного расчёта необходимо знать эти цифры для вашей местности, данные несложно найти в интернете или на метеостанции.

Таблица инсоляции по месяцам для разных регионов

Инсоляция зависит не только от времени года, но и от угла наклона батареи

При расчёте ориентируйтесь на показатели наименьшей инсоляции в течение года, иначе в этот период батарея не будет вырабатывать достаточное количество энергии.

Предположим, минимальные показатели - в январе, 0.69, максимальные - в июле, 5.09.

Поправочные коэффициент для зимнего времени - 0.7, для летнего - 0.5.

Необходимое количество энергии - 4800 Вт.ч.

Одна панель имеет мощность 260 Вт и напряжение 24 В.

Потери на АБ и инверторе составляют 20%.

Вычисляем потребление с учётом потерь: 4800×1,2=5760 Вт·ч=5,76 кВтч.

Определяем производительность одной панели.

Летом: 0,5× 260×5,09= 661,7 Втч.

Зимой: 0,7× 260×0,69=125,5 Втч.

Высчитываем необходимое количество батарей, разделив потребляемую энергию на производительность панелей.

Летом: 5760/661,7=8,7 шт.

Зимой: 5760/125,5=45,8 шт.

Получается, что для полного обеспечения, зимой понадобится в пять раз больше модулей, чем летом. Поэтому стоит сразу устанавливать больше батарей или на зимний период предусмотреть гибридную систему электроснабжения.

Как собрать солнечную батарею своими руками

Сборка состоит из нескольких этапов: изготовление корпуса, пайка элементов, сборка системы и её установка. Прежде чем приступить к работе, запаситесь всем необходимым.

Батарея состоит из нескольких слоёв

Материалы и инструменты

  • фотоэлементы;
  • плоские проводники;
  • спиртово-канифольный флюс;
  • паяльник;
  • алюминиевый профиль;
  • алюминиевые уголки;
  • метизы;
  • силиконовый герметик;
  • ножовка по металлу;
  • шуруповёрт;
  • стекло, оргстекло или плексиглаз;
  • диоды;
  • измерительные приборы.

Фотоэлементы лучше заказать в комплекте с проводниками, они специально предназначены для этой цели. Другие проводники обладают большей хрупкостью, что может стать проблемой при пайке и сборке. Есть ячейки с уже припаянными проводниками. Стоят они дороже, но существенно экономят время и трудозатраты.

Приобретите пластины с проводниками, это сократит время работы

Рамка корпуса обычно изготавливается из алюминиевого уголка, но возможно использование деревянных реек или брусков квадратного сечения 2х2. Этот вариант менее предпочтителен, так как не обеспечивает достаточную защиту от атмосферного воздействия.

Для прозрачной панели выбирайте материал с минимальным показателем преломления света. Любое препятствие на пути лучей увеличивает потери энергии. Желательно, чтобы материал пропускал как можно меньше инфракрасного излучения.

Важно! Чем больше наргевается панель, тем меньше она вырабатывает энергии.

Расчёт каркаса

Габариты каркаса высчитываются исходя из размеров ячеек. Важно между соседними элементами предусмотреть небольшое расстояние в 3-5 мм и учесть ширина рамки, чтобы она не перекрывала кромки элементов.

Ячейки выпускаются различных типоразмеров, рассмотрим вариант из 36 пластин, размером 81х150 мм. Элементы располагаем в 4 ряда, по 9 штук в одном. Исходя из этих данных, размеры каркаса получаются 835х690 мм.

Изготовление короба


Пайка элементов и сборка модулей

Если элементы приобретены без контактов, сначала их нужно припаять к каждой пластине. Для этого нарежьте проводник на одинаковые отрезки.

  1. Вырежьте из картона прямоугольник нужного размера и намотайте на него проводник, затем разрежьте с обеих сторон.
  2. На каждый проводник нанесите флюс, приложите полоску к элементу.
  3. Аккуратно припаяйте проводник по всей длине ячейки.

    Припаяйте проводники к каждой пластине

  4. Ячейки выложите в ряд друг за другом с зазором 3-5 мм и последовательно спаяйте между собой.

    При монтаже периодически проверяйте работоспособность модулей

  5. Готовые ряды по 9 ячеек перенесите в корпус и выровняйте относительно друг друга и контура рамки.
  6. Спаяйте параллельно, используя более широкие шины и соблюдая полярность.

    Выложите ряды элементов на прозрачную подложку и спаяйте между собой

  7. Выведите контакты «+» и «-».
  8. На каждый элемент нанесите по 4 капли герметика и уложите сверху второе стекло.
  9. Дайте клею высохнуть.
  10. Залейте по периметру герметиком, чтобы внутрь не попадала влага.
  11. Закрепите панель в корпусе при помощи уголков, прикрутив их в боковым сторонам алюминиевого профиля.
  12. Установите при помощи герметика блокировочный диод Шоттке, чтобы исключить разрядку АБ через модуль.
  13. Выходной провод снабдите двухконтактным разъёмом, к нему в дальнейшем подсоедините контроллер.
  14. Прикрутите к рамке уголки для крепления батареи к опоре.

Видео: пайка и сборка солнечного модуля

Батарея готова, осталось её установить. Для более эффективной работы можно изготовить трекер.

Изготовления поворотного механизма

Простейший поворотный механизм несложно изготовить самостоятельно. Принцип его работы основан на системе противовесов.

  1. Из деревянных брусков или алюминиевого профиля соберите опору для батареи в виде стремянки.
  2. С помощью двух подшипников и металлической штанги или трубы установите на вершине батарею так, чтобы она была закреплена по центру большей стороны.
  3. Сориентируйте конструкцию с востока на запад и дождитесь, когда солнце будет в зените.
  4. Поверните панель, чтобы лучи падали на неё вертикально.
  5. Укрепите на одном конце ёмкость с водой, уравновесьте её на другом конце грузом.
  6. В ёмкости проделайте отверстие, чтобы вода понемногу вытекала.

По мере вытекания воды, вес сосуда будет уменьшаться и край панели поднимется вверх, поворачивая батарею за солнцем. Величину отверстия придётся определять опытным путём.

Простейший солнечный трекер изготавливается по принципу водяных часов

Всё, что вам понадобится, это утром налить воды в ёмкость. Такую конструкцию не установишь на крыше, а для садового участка или лужайки перед домом она вполне подойдёт. Есть и другие, более сложные конструкции трекера, но они потребуют больших затрат.

Видео: как изготовить самостоятельно электронный солнечный трекер

Установка батарей


Теперь можно провести испытание, и пользоваться бесплатным электричеством.

Обслуживание модулей

Особенного обслуживания солнечные панели не требуют, ведь у них нет движущихся частей. Для их нормального функционирования достаточно время от времени очищать поверхность от грязи, пыли и птичьего помёта.

Помойте батареи из садового шланга, при хорошем напоре воды для этого не понадобится даже забираться на крышу. Следите за исправностью дополнительного оборудования.

Как скоро окупятся затраты

Не стоит ждать сиюминутной выгоды от гелиосистемы снабжения электричеством. Средняя её окупаемость приблизительно 10 лет для автономной системы дома.

Чем больше вы потребляете энергии, тем быстрее окупятся ваши затраты. Ведь и для маленького, и для большого потребления требуется приобретение дополнительного оборудования: АКБ, инвертора, контроллера, а они оставляют нималую часть расходов.

Учитывайте также срок службы оборудования, да и самих панелей, чтобы не пришлось их менять прежде, чем они окупятся.

Несмотря на всё издержки и недостатки, за солнечной энергией будущее. Солнце относится к возобновляемым источникам энергии и он прослужит, по крайней мере, ещё 5 тысяч лет. Да и наука не стоит на месте, появляются новые материалы для фотоэлементов, с гораздо большим КПД. А значит, скоро они будут доступнее по цене. Но использовать энергию солнца можно уже сейчас.

Наверное, нет такого человека, который не хотел бы стать более независимым. Возможность полностью распоряжаться собственным временем, путешествовать, не зная границ и расстояний, не задумываться о жилищных и финансовых проблемах - вот что даёт ощущение настоящей свободы. Сегодня мы расскажем о том, как, используя солнечное излучение, снять с себя бремя энергетической зависимости. Как вы догадались, речь пойдёт о солнечных батареях. А если быть точнее, то о том, можно ли своими руками построить настоящую солнечную электростанцию.

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже - человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн - вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Поскольку ток одной фотоэлектрической ячейки составляет миллиамперы, то для получения электроэнергии достаточной мощности их приходится соединять в модульные конструкции. Защищённые от внешнего воздействия массивы солнечных фотоэлементов и являются солнечной батареей (из-за плоской формы устройство нередко называют солнечной панелью).

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях - в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее - за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Солнечная батарея: как это работает

После того как Энштейн описал фотоэлектрический эффект, миру открылась вся простота такого, казалось бы, сложного физического явления. В его основе лежит вещество, отдельные атомы которого находятся в неустойчивом состоянии. При «бомбардировке» фотонами света из их орбит выбиваются электроны - вот они-то и являются источниками тока.

Практически полвека фотоэффект не имел практического применения по одной простой причине - отсутствовала технология получения материалов с неустойчивой атомной структурой. Перспективы дальнейших исследований появились лишь с открытием полупроводников. Атомы этих материалов имеют либо избыток электронов (n-проводимость), или же испытывают в них нехватку (p-проводимость). При использовании двухслойной структуры со слоем n-типа (катод) и p-типа (анод), «обстрел» фотонами света выбивает электроны из атомов n-слоя. Покидая свои места, они устремляются на свободные орбиты атомов p-слоя и далее через подключённую нагрузку возвращаются на исходные позиции. Наверное, каждый из вас знает, что движение электронов в замкнутом контуре представляет собой электрический ток. Вот только заставить электроны перемещаться удаётся не благодаря магнитному полю, как в электрических генераторах, а за счёт потока частиц солнечного излучения.

Солнечная панель работает благодаря фотоэлектрическому эффекту, который был открыт ещё в начале XIX века

Поскольку мощность одного фотоэлектрического модуля недостаточна для питания электронных устройств, то для получения требуемого напряжения используется последовательное подключение множества ячеек. Что же касается силы тока, то её наращивают параллельным соединением определённого количества таких сборок.

Генерация электричества в полупроводниках напрямую зависит от количества солнечной энергии, поэтому фотоэлементы не только устанавливают под открытым небом, но и стараются сориентировать их поверхность перпендикулярно падающим лучам. А чтобы защитить ячейки от механических повреждений и атмосферного воздействия, их монтируют на жёстком основании и сверху защищают стеклом.

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы - эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин - они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических - не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок - следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью - их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях - высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью - найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные - из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы - как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Продавцы нередко предлагают фотоэлементы так называемого класса «B», которые представляют собой повреждённые солнечные батареи моно- или поликристаллического типа. Небольшие сколы, трещины или отсутствие уголков практически не сказывается на производительности ячеек, зато позволяет приобрести их по гораздо меньшей стоимости. Именно по этой причине их выгоднее всего использовать в самодельных гелиоэнергетических устройствах.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

На какую мощность солнечных батарей можно рассчитывать

Задумываясь о строительстве собственной солнечной электростанции, каждый мечтает о том, чтобы полностью отказаться от проводного электричества. Для того чтобы проанализировать реальность этой затеи, сделаем небольшие расчёты.

Узнать суточное потребление электроэнергии несложно. Для этого достаточно заглянуть в присланный энергосбывающей организацией счёт и разделить количество указанных там киловатт на число дней в месяце. К примеру, если вам предлагают оплатить 330 кВт×час, то это значит, что суточное потребление составляет 330/30=11 кВт×час.

График зависимости мощности солнечной батареи в зависимости от освещённости

В расчётах следует обязательно учитывать тот факт, что солнечная панель будет вырабатывать электричество только в светлое время суток, причём до 70% генерации осуществляется в период с 9 до 16 часов. Кроме того, эффективность работы устройства напрямую зависит от угла падения солнечных лучей и состояния атмосферы.

Небольшая облачность или дымка снизят эффективность токоотдачи гелиоустановки в 2–3 раза, тогда как затянутое сплошными облаками небо спровоцирует падение производительности в 15–20 раз. В идеальных условиях для генерации 11 кВт×час энергии было бы достаточно солнечной батареи мощностью 11/7 = 1.6 кВт. Учитывая влияние природных факторов, этот параметр следует увеличить примерно на 40–50%.

Кроме того, есть ещё один фактор, заставляющий увеличить площадь используемых фотоэлементов. Во-первых, не следует забывать о том, что ночью батарея работать не будет, а значит, понадобятся мощные аккумуляторы. Во-вторых, для питания бытовых приборов нужен ток напряжением 220 В, поэтому понадобится мощный преобразователь напряжения (инвертор). Специалисты утверждают, что потери на накопление и трансформацию электроэнергии забирают до 20–30% от её общего количества. Поэтому реальная мощность солнечной батареи должна быть увеличена на 60–80% от расчётной величины. Принимая значение неэффективности в 70%, получаем номинальную мощность нашей гелиопанели, равную 1.6 + (1.6×0.7) =2.7 кВт.

Использование сборок из высокотоковых литиевых аккумуляторов является одним из наиболее изящных, но отнюдь не самым дешёвым способом хранения солнечной электроэнергии

Для хранения электроэнергии понадобятся низковольтные аккумуляторы, рассчитанные на напряжение 12, 24 или 48 В. Их ёмкость должна быть рассчитана на суточное потребление энергии плюс потери на трансформацию и преобразование. В нашем случае понадобится массив батарей, рассчитанных на хранение 11 + (11×0.3) = 14.3 кВт×час энергии. Если использовать обычные 12-вольтовые автомобильные аккумуляторы, то понадобится сборка на 14300 Вт×ч / 12 В = 1200 А×ч, то есть шесть аккумуляторов, рассчитанных на 200 ампер-часов каждый.

Как видите, даже для того, чтобы обеспечить электричеством бытовые потребности средней семьи, понадобится серьёзная гелиоэлектрическая установка. Что касается использования самодельных солнечных батарей для отопления, то на данном этапе такая затея не выйдет даже на границы самоокупаемости, не говоря уж о том, чтобы можно было что-то сэкономить.

Расчёт размера батареи

Размер батареи зависит от требуемой мощности и габаритов источников тока. При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера. Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.

При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).

Постройка самодельной солнечной батареи

Прежде чем приступать к изготовлению солнечной панели, следует решить задачи по её размещению, рассчитать габариты и подготовить необходимые материалы и инструмент.

Правильный выбор места установки - это важно

Поскольку солнечная панель будет изготавливаться своими руками, соотношение её сторон может быть любым. Это очень удобно, поскольку самодельное устройство можно более удачно вписать в экстерьер кровли или дизайн загородного участка. По этой же причине выбирать место для монтажа батареи следует ещё до начала проектировочных мероприятий, не забывая учитывать несколько факторов:

  • открытость места для солнечных лучей в течение светового дня;
  • отсутствие затеняющих построек и высоких деревьев;
  • минимальное расстояние до помещения, в котором установлены аккумулирующие мощности и преобразователи.

Конечно, установленная на крыше батарея выглядит более органично, однако размещение устройства на земле имеет больше преимуществ. В этом случае исключается возможность повреждения кровельных материалов при установке поддерживающего каркаса, снижается трудоёмкость монтажа устройства и появляется возможность своевременного изменения «угла атаки солнечных лучей». И что самое главное - при нижнем размещении будет намного проще поддерживать чистоту поверхности солнечной панели. А это является залогом того, что установка будет работать в полную силу.

Монтаж солнечной панели на крыше вызвана скорее нехваткой места, чем необходимостью или удобством эксплуатации

Что понадобится в процессе работы

Приступая к изготовлению самодельной солнечной панели, следует запастись:

  • фотоэлементами;
  • многожильным медным проводом или специальными шинами для соединения солнечных ячеек;
  • припоем;
  • диодами Шоттки, рассчитанными на токоотдачу одного фотоэлемента;
  • качественным антибликовым стеклом или плексигласом;
  • рейками и фанерой для изготовления каркаса;
  • силиконовым герметиком;
  • метизами;
  • краской и защитным составом для обработки деревянных поверхностей.

В работе понадобится самый простой инструмент, который всегда есть под рукой у домовитого хозяина - паяльник, стеклорез, пила, отвёртка, малярная кисть и др.

Инструкция по изготовлению

Для изготовления первой солнечной батареи лучше всего использовать фотоэлементы с уже припаянными выводами - в этом случае уменьшается риск повреждения ячеек при сборке. Тем не менее, если вы имеете навыки обращения с паяльником, то сможете немного сэкономить, купив солнечные элементы с нераспаянными контактами. Для постройки панели, которую мы рассматривали в приведённых выше примерах, понадобится 120 пластин. Используя соотношение сторон примерно 1:1, потребуется укладка 15 рядов фотоэлементов по 8 штук в каждом. При этом мы сможем каждые два «столбика» соединить последовательно, а четыре таких блока подключить параллельно. Таким образом можно избежать путаницы в проводах и получить ровный, красивый монтаж.

Схема электрических соединений домашней солнечной электростанции

Корпус

Сборку солнечной панели всегда следует начинать с изготовления корпуса. Для этого нам понадобятся алюминиевые уголки или деревянные рейки высотой не более 25 мм - в этом случае они не будут бросать тень на крайние ряды фотоэлементов. Исходя из размеров наших кремниевых ячеек размером 3х6 дюймов (7.62х15.24 см), размер рамы должен составлять не менее 125х 125 см. Если вы решите использовать другое соотношение сторон (например, 1:2), то каркас можно дополнительно усилить поперечиной из рейки такого же сечения.

Обратную сторону корпуса следует зашить панелью из фанеры или OSB, а в нижнем торце рамы просверлить вентиляционные отверстия. Соединение внутренней полости панели с атмосферой понадобится для выравнивания влажности - в противном случае не избежать запотевания стёкол.

Для изготовления корпуса солнечной панели подойдут самые простые материалы - деревянные рейки и фанера

По внешнему размеру каркаса вырезают панель из плексигласа или высококачественного стекла высокой степени прозрачности. В крайнем случае можно использовать оконное стекло толщиной до 4 мм. Для его крепления подготавливают уголковые кронштейны, в которых выполняют сверления для крепления к раме. При использовании оргстекла можно проделать отверстия непосредственно в прозрачной панели - это упростит сборку.

Чтобы защитить деревянный корпус солнечной батареи от влаги и грибка, его пропитывают антибактериальным составом и окрашивают масляной краской.

Для удобства сборки электрической части, из ДВП или другого диэлектрического материала вырезают подложку по внутреннему размеру рамы. В дальнейшем на ней будет выполняться монтаж фотоэлементов.

Пайка пластин

Перед тем как начать пайку, следует «прикинуть» укладку фотоэлементов. В нашем случае понадобится 4 массива ячеек по 30 пластин в каждом, причём располагаться в корпусе они будут пятнадцатью рядами. С такой длинной цепочкой будет неудобно работать, к тому же возрастает риск повреждения хрупких стеклянных пластин. Рационально будет соединять по 5 деталей, а окончательную сборку выполнять после того, как фотоэлементы будут смонтированы на подложке.

Для удобства, фотоэлементы можно смонтировать на непроводящей подложкке из текстолита, оргстекла или ДВП

После соединения каждой цепочки, следует проверить её работоспособность. Для этого каждую сборку помещают под настольную лампу. Записывая значения силы тока и напряжения, можно не только контролировать работоспособность модулей, но и сравнивать их параметры.

Для пайки используем маломощный паяльник (максимум 40 Вт) и хороший, легкоплавкий припой. Его в небольшом количестве наносим на выводные части пластин, после чего, соблюдая полярность подключения, соединяем детали друг с другом.

При пайке фотоэлементов следует проявлять максимальную аккуратность, поскольку эти детали отличаются повышенной хрупкостью

Собрав отдельные цепочки, разворачиваем их тыльной частью к подложке и при помощи силиконового герметика приклеиваем к поверхности. Каждый 15-вольтовый блок фотоэлементов снабжаем диодом Шоттки. Этот прибор позволяет току протекать только в одном направлении, поэтому не позволит аккумуляторам разряжаться при низком напряжении солнечной панели.

Окончательное соединение отдельных цепочек фотоэлементов выполняют согласно представленной выше электрической схеме. В этих целях можно использовать специальную шину или многожильный медный провод.

Навесные элементы солнечной батареи следует закрепить термоклеем или саморезами

Сборка панели

Подложки с расположенными на них фотоэлементами укладывают в корпус и крепят саморезами. Если рама усиливалась поперечиной, то в ней выполняют несколько сверлений под монтажные провода. Кабель, который выводят наружу, надёжно фиксируют на раме и припаивают к выводам сборки. Чтобы не путаться с полярностью, лучше всего использовать двухцветные провода, подключая красный вывод к «плюсу» батареи, а синий - к её «минусу». По верхнему контуру рамы наносят сплошной слой силиконового герметика, поверх которого укладывают стекло. После окончательной фиксации сборку солнечной батареи считают законченной.

После того, как на герметик будет установлено защитное стекло, панель можно транспортировать к месту установки

Установка и подключение солнечной батареи к потребителям

В силу ряда причин самодельная солнечная панель является достаточно хрупким устройством, поэтому требует обустройства надёжного поддерживающего каркаса. Идеальным вариантом будет конструкция, которая позволит ориентировать источник бесплатной электроэнергии в обеих плоскостях, однако сложность такой системы чаще всего является весомым доводом в пользу простой наклонной системы. Она представляет собой подвижную раму, которую можно выставить под любым углом к светилу. Один из вариантов каркаса, сбитого из деревянного бруса, представлен ниже. Вы же можете использовать для его изготовления металлические уголки, трубы, шины и т. д. – всё, что есть под руками.

Чертёж каркаса солнечной батареи

Чтобы подключить солнечную батарею к аккумуляторам, понадобится контроллер заряда. Этот прибор будет следить за степенью заряда и разряда батарей, контролировать токоотдачу и выполнять переключение на сетевое питание при значительной просадке напряжения. Прибор необходимой мощности и требуемого функционала можно купить в тех же торговых точках, где продаются фотоэлементы. Что касается питания бытовых потребителей, то для этого потребуется трансформировать низковольтное напряжение в 220 В. С этим успешно справляется другое устройство - инвертор. Надо сказать, что отечественная промышленность выпускает надёжные приборы с хорошими ТТХ, поэтому преобразователь можно купить на месте - бонусом в этом случае будет «настоящая» гарантия.

Одной солнечной батареи для полноценного электроснабжения дома будет недостаточно - понадобятся еще и аккумуляторы, контроллер заряда и инвертор

В продаже можно найти инверторы одной и той же мощности, отличающиеся по цене в разы. Подобный разброс объясняется «чистотой» выходного напряжения, что является необходимым условием питания отдельных электрических устройств. Преобразователи с так называемой чистой синусоидой имеют усложнённую конструкцию, и как следствие, более высокую стоимость.

Видео: изготовление солнечной панели своими руками

Постройка домашней солнечной электростанции является нетривиальной задачей и требует как финансовых и временных затрат, так и минимальных знаний основ электротехники. Приступая к сборке солнечной панели, следует соблюдать максимальное внимание и аккуратность - только в этом случае можно рассчитывать на удачное решение вопроса. Напоследок хотелось бы напомнить о том, что загрязнение стекла является одним из факторов падения производительности. Не забывайте своевременно чистить поверхность солнечной панели, иначе она не сможет работать на полную мощность.

Одним из способов сократить оплату коммунальных услуг является использование солнечных батарей. Такую батарею можно сделать и установить своими руками.

Что представляет собой солнечная батарея и для чего она используется?

Солнечная батарея - это устройство, принцип работы которого основан на способности фотоэлементов преобразовывать энергию солнца в электричество. Эти преобразователи соединены между собой в общую систему. Получаемый электрический ток накапливается в специальных устройствах - аккумуляторах.

Чем больше площадь панелей, тем больше электрической энергии можно получить

Мощность солнечной батареи зависит от размера поля из фотоэлементов. Но это не означает, что только большие площади способны воспроизвести требуемое количество электроэнергии. Например, всем знакомые калькуляторы могут использовать портативные солнечные батареи, которые вмонтированы в их корпус.

Преимущества и недостатки

К преимуществам солнечной батареи относятся:

  • простота монтажа и обслуживания;
  • отсутствие вреда для окружающей среды;
  • небольшая масса панелей;
  • бесшумная работа;
  • независящие от распределительной сети поставки электрической энергии;
  • неподвижность элементов конструкции;
  • небольшие денежные затраты на изготовление;
  • долгий срок эксплуатации.

В число недостатков солнечной батареи входят:

  • трудоёмкость процесса изготовления;
  • бесполезность в тёмное время суток;
  • потребность в большой площади для установки;
  • восприимчивость к загрязнениям.

Хотя изготовление солнечной батареи является трудоёмким процессом, её можно собрать своими руками.

Инструменты и материалы

Если нет возможности приобрести готовую солнечную батарею для дома, её можно сделать самостоятельно.

Для изготовления солнечной батареи понадобятся:

  • фотоэлементы (для создания гелиопанели);
  • набор специальных проводников (для соединения фотоэлементов);
  • алюминиевые уголки (для корпуса);
  • диоды Шотке;
  • крепёжные метизы;
  • винты для крепежа;
  • лист поликарбоната (прозрачный);
  • силиконовый герметик;
  • паяльник.

Выбор фотоэлементов

Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.

Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.

Важная информация: Желательно приобретать фотоэлементы у одного производителя, так как ячейки разных марок могут иметь существенные различия, что сказывается на эффективности работы и процессе сборки, а также приводит к более высоким затратам энергии при эксплуатации.

При выборе фотоэлементов необходимо обратить внимание на следующее:

  • чем больше ячейка, тем большее количество энергии она производит;
  • элементы одного типа создают одинаковое напряжение (от размера данный показатель не зависит).

Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.

Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.


Поли- и монокристаллические панели легко отличить даже на первый взгляд

Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой - это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборе фотоэлементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.

Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.

Инструкция по изготовлению

Процесс изготовления солнечной батареи состоит из нескольких этапов:

  1. Подготовка фотоэлементов и пайка проводников.
  2. Создание корпуса.
  3. Сборка элементов и герметизация.

Подготовка фотоэлементов и пайка проводников

На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.

С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.


Качество пайки является главным требованием для эффективной работы солнечной батареи

Важная информация: Желательно выполнять процесс пайки на ровной твёрдой поверхности.

Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.

Важная информация: Независимо от того, какой вид подключения вы выбрали, необходимо предусмотреть шунтирующие диоды, которые устанавливаются на клемме «плюс». Идеально подходят диоды Шорке. Они препятствуют разрядке устройства ночью.

Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.


Проверка устройства выполняется на солнечной стороне

Как собрать корпус

  • Подготовить уголки из алюминия с невысокими бортиками.
  • Для метизов предварительно выполняются отверстия.
  • Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи. Важно обратить внимание на отсутствие незаполненных мест.
  • После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется.
  • Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.

Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

Важная информация: Кроме поликарбоната можно использовать оргстекло или антибликовое стекло.

Сборка элементов и герметизация

  • Очистите прозрачный материал от загрязнений.
  • Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
  • На каждый фотоэлемент нанесите монтажный силикон.

Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью
  • После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.

Герметизация конструкции обеспечит плотное прилегание панелей друг к другу

Видео: Изготовление солнечной батареи своими руками в домашних условиях

Правила установки

Чтобы получить возможность использовать солнечную батарею по максимуму, рекомендуется при установке устройства придерживаться определённых правил:

  1. Необходимо правильно выбрать место. Если разместить солнечную батарею там, где постоянно присутствует тень, устройство будет малоэффективно. Исходя из этого, не рекомендуется устанавливать прибор около деревьев, желательно выбирать открытое место. Многие монтируют солнечную батарею на крыше дома.
  2. При установке необходимо направлять устройство в сторону солнца. Нужно добиться максимального попадания его лучей на фотоэлементы. К примеру, находясь на севере, следует ориентировать лицевую сторону солнечной батареи на юг.
  3. Большую роль играет определение уклона устройства. Он также зависит от географического положения. Считается, что угол уклона должен составлять широту, в которой устанавливается батарея. При размещении в зоне экватора придётся производить настройку угла наклона по времени года. Коррекция составит 12 градусов, учитывая увеличение и уменьшение летом и зимой соответственно.
  4. Рекомендуется установить солнечную батарею в доступном месте. По мере использования устройства его лицевая сторона накапливает грязь, а в зимнее время её заносит снегом, и в результате выработка энергии снижается. Поэтому необходимо периодически проводить чистку батареи, удаляя налёт с её лицевой панели.

Изготовление устройства из подручных средств

На сегодняшний день умельцами были разработаны способы создания солнечных батарей из подручных материалов, но оправдана ли такая экономия?

Использование старых транзисторов

Для изготовления солнечной батареи можно использовать старые транзисторы. Для этого срезают их крышки, зафиксировав приборы в тисках за ободок. Затем выполняется измерение напряжения под воздействием света. Необходимо определить его на всех выводах прибора с целью обнаружения максимальных значений. Напряжение зависит от мощности транзистора, а также от габаритов кристалла.


Срезать крышку транзистора нужно аккуратно, иначе можно повредить тонкие провода, которые подведены к полупроводниковому кристаллу

После этого можно приступить к изготовлению солнечной батареи. Используя пять транзисторов и, соединив их последовательно, можно получить устройство достаточной для обеспечения работы калькулятора мощности. Каркас собирается из листового пластика. Необходимо просверлить в нём отверстия, нужные для вывода транзистора. Калькулятор на основе такой солнечной батареи работает стабильно, однако нужно, чтобы он находился не дальше 30 см от источника света. Для лучших результатов целесообразно использовать вторую цепочку транзисторов.

Применение диодов

Для сбора солнечной батареи понадобится много диодов. Кроме того, используется плата для подложки. В процессе изготовления применяется паяльник.

Сначала нужно открыть внутренний кристалл, чтобы на него попадали лучи солнца. Для этого верхушка диода срезается и снимается. Нижнюю часть, где находится кристалл, необходимо подогреть над газовой плитой около 20 секунд. Когда расплавится припой кристалла, он легко снимется пинцетом. Аналогичная манипуляция проводится с каждым диодом. Затем кристаллы припаиваются к плате.


Элементы солнечной батареи из диодов соединяются между собой с помощью тонких медных проводов

Для получения 2–4 В достаточно 5 блоков, состоящих из пяти кристаллов, спаянных последовательно. Блоки размещаются между собой параллельно.

Устройство из листов меди

Чтобы изготовить солнечную батарею из листов меди, потребуется:

  • сами медные листы;
  • два зажима «крокодил»;
  • микроамперметр высокой чувствительности;
  • электрическая плита (не менее 1000 Вт);
  • пластиковая бутылка с обрезанным верхом;
  • две ложки поваренной соли;
  • вода;
  • наждачная бумага;
  • ножницы по листовому металлу.

Порядок действий:

  1. Сначала отрежьте кусок меди, который по размерам соответствует тэну на плите. Поверхность листа очистите от жира и зачистите наждачной бумагой, затем поместите на плиту и нагревайте при максимальной температуре.
  2. Во время образования окиси можно увидеть разноцветные узоры. Необходимо дождаться чёрного цвета, а затем оставить медный лист нагреваться ещё около получаса. По истечении этого промежутка времени плита выключается. Лист остаётся на ней для медленного охлаждения.
  3. Когда чёрная окись отпадёт, необходимо промыть медь под проточной водой.
  4. Затем вырежьте кусок аналогичного размера из целого листа. Обе части разместите в пластиковой бутылке. Важно, чтобы они не соприкасались друг с другом.
  5. Медные пластины прикрепите к стенкам бутылки с помощью зажимов. Провод от чистого листа подключите к положительному выводу измерительного прибора, а от меди с оксидом - к отрицательному.
  6. Соль растворите в небольшом количестве воды. Солёную воду осторожно вливайте в бутылку, стараясь не намочить контакты. Раствора должно быть столько, чтобы он не покрывал пластины полностью. Солнечная батарея готова, можно проводить эксперименты.

При размещении медных пластин в ёмкости нужно аккуратно изогнуть их, чтобы они вместились, но не сломались

Есть ли выгода?

КПД устройства, изготовленного из транзисторов, очень низок. Причина этого состоит в большой площади самого прибора и небольшом размере солнечного элемента (полупроводника). Таким образом, солнечная батарея на основе транзисторов не получила распространения, подобные устройства подходят только для развлечений.

Диодам свойственно потреблять ток и самопроизвольно светиться. Поэтому при их использовании для изготовления солнечной батареи часть диодов будет генерировать электричество, а остальные приборы, наоборот, его потреблять. Из этого можно сделать вывод, что эффективность такого устройства низкая.

Чтобы зажечь лампочку от солнечной батареи на основе медных листов, потребуется использовать большое количество материала. К примеру, для работы плиты на 1000 Вт необходимо 1 600 000 м² меди. Для обустройства такого прибора на крыше дома потребуется, чтобы её площадь составляла 282 м². И все усилия пошли бы на обеспечение работы одной печи. На практике использовать такую солнечную батарею нет смысла.

Несмотря на относительную дороговизну, солнечные батареи довольно быстро окупаются. Попробуйте этот экологичный способ выработки энергии, собрав солнечную батарею своими руками.

Солнечные лучи, как альтернативный источник энергии, приобретают все более широкую популярность среди населения. Особенно это касается жителей частного сектора, постепенно избавляющихся от энергетической зависимости. Однако подобные системы еще довольно дороги и не все могут их приобрести. В таких ситуациях наилучшим выходом становится солнечная батарея изготовленная своим руками из подручных материалов.

Выбор фотоэлементов

Любая солнечная батарея для дома сделанная своими руками, будет в любом случае стоить значительно ниже, чем заводская. У известных производителей производится тщательный отбор фотоэлементов, в процессе которого отсеиваются заготовки, имеющие пониженные или нестабильные показатели. Поверхность готовых изделий покрывается специальным стеклом, снижающим отражение света, отсутствующим в свободной продаже. В производстве применяются многие другие методы исследования пластинок, совершенно не подходящие для домашних условий.

Однако, солнечная батарея своими руками вполне может быть изготовлена, а полученные самоделки обладают хорошей работоспособностью и не столь заметно отличаются от изделий промышленного производства. Зато экономия денежных средств получается практически в два раза, и в определенных условиях делать панели не только целесообразно, но и выгодно.

Следовательно, основная цель на стадии подготовки заключается в правильном выборе наиболее подходящих фотоэлементов. По техническим причинам пленочные или аморфные изделия можно сразу же исключить и остановиться на пластинках их кремниевых кристаллов. В самых первых домашних опытах рекомендуется воспользоваться более дешевыми элементами из поликристаллов и лишь потом переходить к работе с монокристаллическими кремниевыми материалами.

Приобрести фотоэлементы для солнечной батареи возможно на известных зарубежных торговых площадках, таких как Алиэкспресс, Амазон и других. Они находятся там в свободной продаже в виде отдельных пластинок с различной производительностью и габаритными размерами, что позволяет собрать солнечную панель требуемой мощности.

Кроме того, существуют бракованные изделия, относящиеся к так называемому классу В, имеющие различные повреждения в виде небольших сколов и трещин. На производительность это почти не влияет, зато их стоимость значительно ниже, поэтому они чаще всего используются в самодельных гелиосистемах.

Расчет и проектирование

Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.

Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.

Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.

Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.

Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.

Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м 2 .

Формула для расчета

Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е - величина солнечной инсоляции за определенный период времени, k - коэффициент, составляющий летом - 0,5, зимой - 0,7, Pw - мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.

Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.

Существуют различные модели с целым рядов мощностей элементов - от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.

Количество фотоэлементов оказывает влияние на выбор емкости , поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.

Выбор места установки

Производительность солнечных панелей во многом зависит от места их установки. Поэтому, перед тем как сделать солнечную батарею своими руками, нужно заранее определиться, где она будет расположена.

Одновременно, следует учитывать следующие факторы:

  • Степень затененности. Если вокруг панели находятся здания, заросли деревьев и прочие габаритные предметы, создающие тень, она не сможет нормально функционировать и вырабатывать достаточное количество электроэнергии. Кроме того, панель может очень быстро прийти в негодность, не оправдав расходы на ее изготовление.
  • Ориентирование панелей относительно солнца. Световой поток, создаваемый солнечными лучами, должен максимально захватывать поверхность фотоэлементов. Жители северного полушария направляют панель главной стороной на юг, а в южном полушарии ориентация выполняется строго на север.
  • Угол наклона. Также выбирается в зависимости от положения и местных координат и устанавливается в соответствии с широтой. Для расчетов угла установки панели в интернете существуют онлайн-калькуляторы, выдающие наиболее подходящий градус.
  • Наличие свободного доступа для чистки, ремонта и обслуживания. В процессе эксплуатации лицевая поверхность панели постепенно покрывается пылью, грязью, а зимой - снегом. В результате, ее эффективность заметно снижается. В некоторых случаях требуется полная замена солнечных батарей. Поскольку очистка будет выполняться самостоятельно, батарею желательно устанавливать в удобном и доступном для себя месте.

Подготовка материалов и инструмента

Прежде чем начинать изготовление солнечных батарей своими руками, необходимо заготовить все требующиеся материальные ресурсы и инструменты:

  • Пластинки фотоэлементов.
  • Диоды Шоттки для шунтирования фотоэлектрических элементов.
  • Специальные шины или многожильный медный провод для соединения модулей между собой.
  • Антибликовое стекло хорошего качества или плексиглас. Любые препятствия на пути солнечных лучей приводят к росту потерь энергии. Преломление света должно быть минимальным.
  • Все материалы, необходимые для пайки.
  • Фанера, рейки или алюминиевые уголки для сборки каркаса.
  • Силиконовый герметик.
  • Метизы, крепления.
  • Защитный состав или краска, чтобы обработать деревянные поверхности.
  • Обычные инструменты - отвертки, кисти малярные, стеклорез, паяльник, ножовки по дереву и металлу и другие приспособления для конкретной ситуации.

Самая первая солнечная батарея собранная своими руками из подручных материалов должна изготавливаться из пластинок, к которым уже припаяны выводы. За счет этого снижается риск их повреждений во время сборки. Если же имеется , то будет дешевле купить обычные фотоэлементы и самостоятельно припаять к ним провода. По результатам расчетов заранее известно, какие пластинки будут соединяться последовательно, а какие - параллельно. Лучше всего составить предварительную схему подключения или макет и по ней делать монтаж.

Размеры каркаса определяются в соответствии с размерами ячеек. Между каждым элементом оставляется тепловой зазор 3-5 мм, а сама рамка не должна перекрывать края элементов.

Как собрать солнечную батарею своими руками

Сборка корпуса солнечной батареи

Сборка солнечных батарей, а именно, корпуса может выполняться в разных вариантах. В первом случае ее можно сделать из фанерных листов и деревянных реек, поэтому такой монтаж не представляет особой сложности. Конструкции выпиливаются по размерам, а затем соединяются между собой саморезами. Все стыки и швы предварительно промазываются герметиком. Все деревянные части покрываются краской или специальными защитными составами. Дальнейшие работы проводятся только после полного высыхания конструкции.

Немного сложнее изготовить солнечную батарею из алюминиевого уголка. В этом случае сборка каркаса происходит в следующем порядке:

  • Сборка из уголка прямоугольного каркаса.
  • В каждом углу конструкции сверлятся отверстия под крепления.
  • Внутренняя часть профиля по всему периметру покрывается силиконовым герметиком.
  • Внутрь каркаса на обработанные места укладывается текстолит или оргстекло, вырезанные по размеру. Их нужно как можно плотнее прижать к уголкам.
  • Внутри корпуса лист прозрачного материала фиксируется крепежными уголками, установленными по углам.
  • Дальнейшие работы проводятся после полного высыхания герметика. Предварительно, все внутренние поверхности протираются от пыли и загрязнений.

Пайка проводов и соединение фотоэлементов

Все элементы для солнечных батарей отличаются повышенной хрупкостью и требуют аккуратного обращения. Перед началом пайки они протираются, чтобы поверхность была идеально чистой. Элементы с припаянными проводниками все равно следует проверить и устранить обнаруженные недостатки.

На каждой фотопластинке имеются контакты с различной полярностью. Вначале проводники припаиваются к ним, а уже потом соединяются между собой.

При использовании шин вместо проводов, необходимо учитывать следующие особенности:

  • Шины размечаются и разрезаются на требуемое количество полосок.
  • Контакты пластин протираются спиртом, после чего на них наносится тонкий слой флюса, с одной стороны.
  • Шина прикладывается по всей длине контакта, после чего по ней нужно провести разогретым паяльником.
  • Пластина переворачивается, и такая же операция повторяется на другой стороне.

Паяльник во время монтажа нельзя сильно прижимать к пластине, иначе она может лопнуть. На лицевой стороне после пайки не должно оставаться неровностей. Если они остались, нужно еще раз пройти паяльником по шву.

Чтобы не ошибиться с размещением пластин, перед тем как их собирать, на поверхность листа рекомендуется нанести разметку с учетом всех размеров и зазоров. После этого фотоэлементы укладываются на свои места. Затем контакты панелей соединяются между собой с обязательным соблюдением полярности.

Нанесение герметизирующего слоя

Перед тем как самому герметизировать конструкцию, нужно выполнить тестирование и проверить солнечные батареи на работоспособность. Она выносится на солнце, после чего на выводах шин замеряется напряжение. Если оно в пределах нормы, можно приступать к нанесению герметика.

Один из наиболее подходящих вариантов предполагает следующие действия:

  • Силиконовый герметик наносится на самодельные солнечные батареи капельками по краям корпуса и между пластинами. После этого края фотоэлементов аккуратно прижимаются к прозрачному основанию и должны прилегать к нему как можно плотнее.
  • На каждый край пластинок укладывается небольшой груз, после чего герметик полностью высыхает, а фотоэлементы надежно фиксируются.
  • В самом конце аккуратно промазываются края рамки и все стыки между пластинами. На данном этапе герметиком покрывается все, кроме самих пластинок, он не должен попасть на их оборотную сторону.

Окончательная сборка солнечной панели

После всех операций остается лишь полностью собрать солнечную батарею в домашних условиях.

В этом случае порядок действий будет следующий:

  • В боковой части корпуса устанавливается соединительный разъем, к которому подключаются диоды Шоттки.
  • С лицевой стороны вся сборка пластинок солнечной батареи закрывается прозрачным защитным экраном и герметизируется, чтобы исключить попадание влаги внутрь конструкции.
  • Для обработки лицевой стороны рекомендуется использовать специальный лак, например, PLASTIK-71.
  • После сборки выполняется окончательная проверка, после чего солнечная батарея из подручных средств сделанная своими руками может устанавливаться на свое место.

Самодельная солнечная батарея – полноценная замена выпущенных солнечных панелей, ведь по мощности она ничем не уступает.

Основные этапы изготовления

  1. Сборка рамы.
  2. Изготовление подложки.
  3. Подготовка светочувствительных элементов и их пайка.
  4. Закрепление пластин на подложке.
  5. Подключение диодов и всех проводов.
  6. Герметизация.

Выбор светочувствительных пластин

Они являются главным элементом будущей устанавливаемой на . Именно от их особенностей будет зависеть мощность всей сделанной в домашних условиях установки. Можно установить:

  1. Монокристаллические пластины.
  2. Поликристаллические пластины.
  3. Аморфный кристалл.

Первые способны создать наибольшее количество электрического тока. Такая их производительность проявляется в условиях отличного освещения. Если интенсивность освещения становится меньше, их эффективность падает. Более продуктивной в таких условиях становится панель с поликристаллическими пластинами. Она при плохом освещении сохраняет привычный для себя небольшой КПД 7-9%. Монокристаллические радуют КПД, равным 13%.

Аморфный кремний отстает в производительности, однако из-за того, что является гибким и неуязвимым к ударам, он самый дорогой.

Самые хорошие светочувствительные элементы стоят дорого. Это касается тех пластин, в которых нет ни одного дефекта. Дефектные же изделия имеют чуть меньшую мощность и стоят значительно дешевле . Именно такие фотоэлементы стоит использовать для своего, создаваемого в домашних условиях, источника тока.

В наиболее популярных мировых интернет-магазинах (именно там есть наибольшее количество предложений по ) продают разные по размерам фотопластинки. Для своей батареи нужно покупать светочувствительные элементы с одинаковыми размерами. При покупке, а еще лучше, при разработке проекта стоит учитывать такие нюансы:

  1. Фотоэлементы различных размеров генерируют ток с разной силой . Чем больше размер, тем больше сила тока. При этом она будет ограниченной силой тока наименьшего элемента. Неважно, что на панели размещается пластина с вдвое большими размерами. Панель будет выдавать электрический ток с той силой, которую имеет ток, созданный наименьшим элементом. Поэтому крупные элементы будут немного «отдыхать».
  2. Напряжение от размеров не зависит . Оно зависит от типа элементов. Его можно нарастить, подключив пластины последовательно.
  3. Мощность всей установки для частного дома или дачи является произведением напряжения и силы тока .

Расчет характеристик панели

Солнечная панель должна генерировать такой электрический ток, который может легко заряжать 12-вольтные батареи. Для их подзарядки необходим ток с большим напряжением. Очень хорошо, когда ток, созданный солнечной батарей, имеет напряжение 18 В.

Ни один из небольших светочувствительных элементов не выдает такого напряжения. Нужно узнать характеристики тока, который может создать один фотоэлемент. Часто продавцы указывают эти цифры.

Например, одна пластина дает ток с напряжением 0,5 В. Чтобы получить на выходе солнечной панели 18 В, нужно выполнить последовательное подключение 36 фотоэлементов. В таком случае общее напряжение является равным сумме напряжений токов, полученных на всех светочувствительных пластинах. Сила тока при последовательном подключении не изменится. Поэтому она будет равна показателю, который дает наименьший по размерам фотоэлемент.

Читайте также: Как произвести расчет солнечных панелей

Если нужно увеличить силу тока , то придется устанавливать дополнительное количество пластин и подключать их параллельно. Общая сила тока будет суммой сил токов, созданных каждой параллельно подключенной пластиной.

Расчет солнечных батарей, которые будут стоять на крыше дачи или частного дома, делают так:

  1. Рассчитывают мощность устройств , которые будет заряжать солнечная батарея.
  2. Определяют возможности наименьшего по размерам фотоэлемента. Это можно узнать как у продавцов, так и самостоятельно, поставив его на свет и, измерив напряжение и силу тока.
  3. Определяют напряжение и силу тока самой панели. Например, 18 В и 3 А. Эти величины дадут возможность узнать мощность панелей. Она будет составлять 18х3 = 54 Вт. Для несколько часовой работы светодиодных ламп этого хватит.
  4. Сравнивают мощность источника света с мощностью электроприборов. При необходимости вносят коррективы в основные параметры тока. Меняют мощность, а вместе с ней напряжение или силу тока. Высчитывают нужное количество панелей.
  5. Рассчитывают нужное для одной панели число фотоэлементов. Оно должно быть таким, чтобы дать электроэнергию с необходимыми характеристиками. При этом определяют количество пластин в одном ряду и учитывают способ их подключения.

Большинство проектов, которые касаются того, как , предусматривают изготовление изделия с площадью 1 м². Часто мощность такой батареи составляет около 120 Вт. 10 панелей дадут более 1 кВт. Если планируется полностью обеспечивать свой дом бесплатной электрической энергией, то следует разрабатывать проект, предусматривающий столько панелей, общая площадь которых превышает 20 кв. м. При размещении их на солнечной стороне и в местах, где интенсивность освещения очень высока, они способы перекрыть месячную потребность в электроэнергии величиной 300 кВт. Даже для среднего дома эта цифра является большой.

Изготовление каркаса солнечной панели

Его можно собрать из любых подручных материалов, среди которых могут быть алюминиевые пивные банки или рулоны фольги. Выбрасывать такие банки не стоит, ведь из них можно собрать хороший воздушный солнечный коллектор. Он будет накапливать тепло солнца и передавать его из пивных банок в середину дома.

Читайте также: Особенности фонтанов на солнечных батареях

Материалами для изготовления каркаса могут быть:

  1. Дерево и фанера, а также ДВП.
  2. Алюминиевые уголки.
  3. Стекло.
  4. Оргстекло.
  5. Поликарбонат.
  6. Плексиглас.
  7. Минеральное стекло.

Из материалов, представленных в первых двух пунктах, изготавливают раму.

Деревянный каркас

Если проект предусматривает использование дерева и ДСП, то процесс изготовления рамы в домашних условиях включает следующие этапы:

  1. Разрезание деревянных реек толщиной 2 см на отрезки. Их длина зависит от того, какие размеры будет иметь рама. Их определяют, смотря на длину и ширину рядов, расположенных на расстоянии 5 мм фотопластин.
  2. Сборка реек в рамку и скрепление их шурупами. Посередине рамки можно сделать 1-2 перекладины. В таком случае придется разбивать светочувствительные пластины на 2-3 группы.
  3. Вырезание одного большого или нескольких малых листов фанеры толщиной 10 мм.
  4. Закрепление на рамке вырезанных кусков фанеры.
  5. Сверление в нижнем и среднем бортике каркаса малых отверстий. На одном бортике делают до 5 отверстий. Они необходимы для выравнивания давления во время нагревания будущей солнечной панели, а также для удаления влаги.
  6. Вырезание из ДСП подложки для фотопластин . Она должна размещаться в середине каркаса. Поэтому ее размеры должны быть меньше ширины и длины каркаса на величину, равную толщине бортиков, умноженной на 2. Подложку в каркасе еще не фиксируют.
  7. Покраска всех элементов светлой краской . Ее нужно наносить несколькими слоями. Краска должна быть специальной. Она не должна выгорать на солнце. Ее цвет должен быть светлым потому, что он отражает лучи, часть из которых смогут уловить полупроводниковые пластины.

Прозрачная часть в виде стекла или аналогов фиксируется в самом конце.

Для того, чтобы сделать солнечную батарею своими руками, лучше всего использовать минеральное стекло. Оно прекрасно поглощает инфракрасные лучи, защищая этим панель от нагревания, и способно противостоять ударам. Оно дорогое. Худший вариант – поликарбонат и стекло. Последнее является тяжелым и не выдерживает ударов, как и пивные банки.

Алюминиевый каркас

Если проект предусматривает использование алюминиевых уголков 35 мм , то раму в домашних условиях делают так:

  1. Разрезают уголки на отрезки нужной длины. При этом противоположные края одной стороны срезают под углом 45°.
  2. Возле концов несрезанных сторон сверлят отверстия. Аналогичные делают по середине и возле концов сторон со срезанными углами.
  3. Складывают четыре уголка так, чтобы они создали раму.
  4. Прикладывают уголки длиной 35 мм и размерами 50х50 мм к углам рамы, фиксируют их метизами.
  5. На внутреннюю поверхность алюминиевых уголков наносят силиконовый герметик.
  6. Размещают стекло на герметике и слегка прижимают. Ждут полного высыхания герметика.
  7. Фиксируют стекло метизами, которые могут лежать возле стеклянных банок. Их надо установить по углам стекла и по середине каждой стороны.
  8. Очищают стекло от пыли.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Строительный портал - Двери и ворота. Интерьер. Канализация. Материалы. Мебель. Новости